THERMAL STORAGE WALL DESIGN MANUAL

BY ALEX WILSON

©1979 NEW MEXICO SOLAR ENERGY ASSOCIATION 1009 Bradbury SE, #35 Albuquerque, NM 87106 Phone: 505-246-0400 www.nmsea.org

> The purposes of this Association shall be to further solar and related arts, sciences, and technologies with concern for the ecologic, social, and economic fabric of the region. This shall be accomplished through exchange of ideas and information by means of meetings, publications, and information centers. The Association shall serve to inform public, institutional, and governmental bodies and seek to raise the level of public awareness of its purposes.

TYPESETTING BY REASONABLE FACSIMILE PRINTED BY MODERN PRESS, ALBUQUERQUE, NM.

Foreword

Interest in solar energy has been growing at an increasingly rapid rate over the past several years. Systems to heat and cool houses, heat water, distill water, dry food crops, and generate electricity are being shown to be feasible throughout the United States and world. The primary roadblock to expanded solar energy utilization is not the lack of technology, but the unavailability of easily understandable information. The purpose of this manual is to educate individuals about one method of heating a building with the sun's energy: through the use of a thermal storage wall.

This manual represents the combined and dedicated efforts of nearly the entire New Mexico Solar Energy Association staff. Particular credit is due to Tom Zeller for work on the heat loss section and help with coordination, Dennis Kensil for the glazing information and chart, Bristol Stickney, Lawrence Sherwood, Mary Beth Bliss and Ellen Morris for technical support, Stephanie Paladino for help with research and coordination, Karobi Kumalaugh for the graphics, Anne Cicero for the editing, and Florence Abersold for her hours spent typing.

I would also like to thank the following individuals for reviewing our draft and offering useful suggestions: Dr. J. Douglas Balcomb. Dr. Francis Wessling. Professor Jeffrey Cook. Michael Coca. Quentin Wilson, and Leslie Davis. And lastly I would like to thank the New Mexico Energy Extension Service for funds making much of the work that went into this manual possible.

- A.T. Wilson

Table of Contents

Chapter 1 Introduction2
Chapter 2 Thermal Storage Wall Components5 Glazing Mass Wall
Chapter 3 Designing and Sizing a Thermal Storage Wall 11 Site Selection Sizing a Thermal Storage Wall Heat Loss Solar Gain Designing a Thermal Storage Wall Glazings Air Space between Glazing and Mass Wall Mass and Water Walls Venting South Roof Overhang Insulators and Reflectors Insulators and Reflectors
Chapter 4 Operation and Performance
Chapter 5 Retrofitting Existing Buildings with Trombe Walls
Appendix Load Collector Ratios
Glossary 36 Bibliography 39

Chapter 1

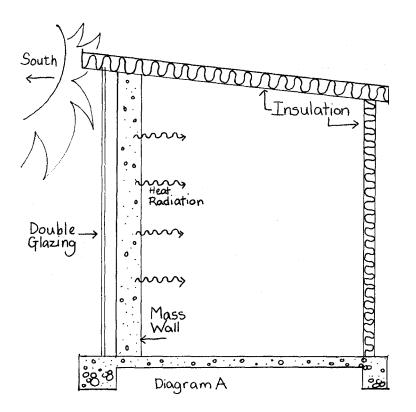
Introduction

In any solar energy system for space heating there are three functions performed: **collection** of solar energy, **storage**, and **distribution** of that energy (heat) from storage to living space. The two basic categories of solar systems for space heating - active and passive - perform these three functions, but in different ways. Active solar heating systems incorporate mechanical devices to circulate air or fluids through collectors and into thermal storage units such as water tanks or rockbeds. Additional fans or pumps are required to bring stored heat to areas where it is needed. Active systems can be quite complex and rely on external sources of energy to operate.

Passive solar heating systems, on the other hand, require no electrical or petroleum based energy to operate; they utilize natural methods of heat transfer - thermal conduction, natural convection, and thermal radiation.' **Thermal conduction** refers to heat transfer from warmer to cooler areas within or between objects by direct contact of particles within the objects.2 **Natural convection** transfers heat between two objects through a moving fluid such as air or water.3 Radiation is the transfer of heat through space by wave motion. In all three modes, heat moves from warmer to cooler objects. The greater the difference in temperature, the greater the heat flow.

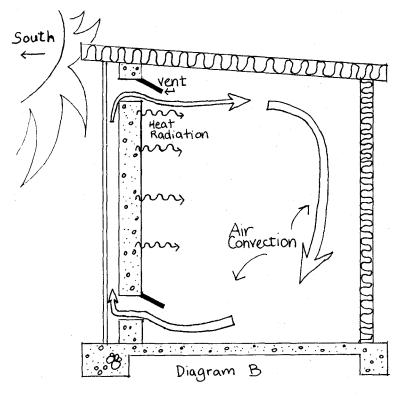
Passive systems perform the three functions of collection, storage, and distribution of solar energy in the following way. Sunlight enters the clear or translucent section of a wall. This section (known as glazing) should be on the south side of a building (in the Northern Hemisphere) to collect the maximum amount of solar radiation available. Solar radiation is then absorbed by the storage medium behind the glazing. This stored heat is distributed into the living space by means of the three transfer mechanisms mentioned above.

There are five basic designs for passive solar space heating: direct gain, solar greenhouse, convective air loop, roof pond, and thermal storage walls. This manual focuses on the design and operation of the last system: thermal storage walls.


THERMAL STORAGE WALLS - AN OVERVIEW

Thermal storage walls fall into three general categories: those utilizing a massive wall to store heat - these are known as Trombe walls; those utilizing a water wall to store heat; and the more experimental type in which heat is stored in eutectic salts or salt hydrates. Because Trombe walls are the most used type of thermal storage wall, much of our discussion will focus on them. Five elements of a thermal storage wall can be identified: glazing, air space between glazing and wall, the mass or storage wall, vents (in some thermal storage walls), and roof overhang (especially in warm climates). These will be discussed in detail later in this manual; it is important here only to introduce how these elements enable a thermal storage wall to function in heating a building. (See Diagram A)

Systems utilizing both active and passive components are frequently termed "hybrid."


² Thermal Conduction: Process of heat transfer through a material medium in which kinetic energy is transmitted by the particles of the material from particle to particle without gross displacement of the particles -ASHRAE 1977 Fundamentals 33.4.

³ Natural Convection: Circulation of gas or liquid (usually air or water) due to differences in density resulting from temperature differences - ASHRAE 1977 Fundamentals.

Diagram A. Unvented thermal storage wall showing double south glazing, thick mass wall, insulated roof and north wall. (Note: A thermal storage wall building does not have to be of this shape; the simplified design is used only to illustrate its functioning.)

During the day sunlight strikes the double glazing on the thermal storagewall (which is located on the **south** side of a house or building) and some percentage of that light (60% to 90% depending on the glazing materials) passes through the glazing. Most of the light penetrating the glazing is absorbed by the dark surface of the mass wall. In an unvented thermal storage wall (Diagram A) this heat goes into the mass wall. In a vented thermal storage wall (Diagram B). In addition to heat moving into the mass wall, air between the glazing and wall heats up and moves directly into the building in a convective loop.

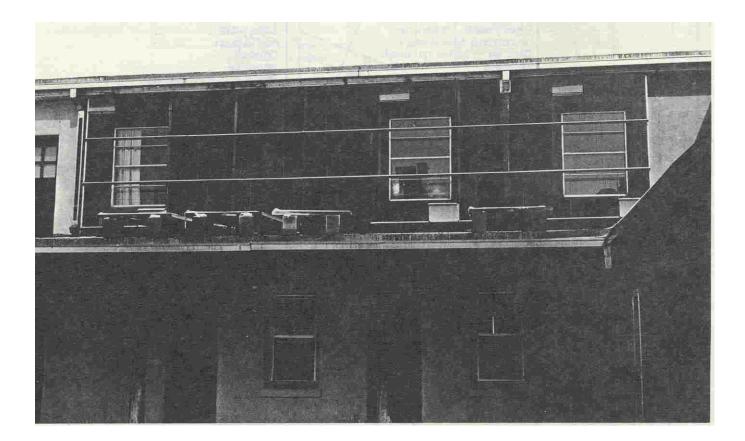


Diagram B. Vented thermal storage wall identical to Diagram A except that in addition to heat transfer through the mass wall, warm air moves into the building through upper vents by means of convection and cool air moves into the collector area from the building through lower vents. These vents should be closed at night to decrease heat loss from the building.

3

In either case (vented or unvented thermal storage walls), heat is absorbed into the mass wall where it is stored and slowly moves through the wall in a **conductive** wave. As will be shown later, the thicker the wall, the more heat it can store and the longer the conductive wave takes to move across it. For a very thick wall (around 24 inches), there will be almost no variation of temperature on the inside, while for a thinner wall (8 to 14 inches) the amplitude of the wave will be pronounced, the wave will move faster, and most of the heat will be provided to the living space in the evenings (when it is often most needed).

With vented thermal storage walls, the vents can provide an important control mechanism both in heating and cooling the building. They can facilitate heat transfer into the building during a winter day. The use of vents through the **glazing** while upper vents through the mass wall are closed reduces heat gain by the mass wall and thus keeps the building cool in the summer (see sections on venting and operation). A roof overhang can also reduce heat gain during the warm months when the sun is high by shading the thermal storage wall. And, as will be shown, there are many other ways to adapt thermal storage walls to increase or decrease solar gain and reduce heat loss.

Chapter 2

Thermal Storage Wall Components

GLAZING

Glazings are critical components of most solar collection systems. The purpose of the clear translucent coverings is to trap heat from the incoming solar radiation. The heat-trapping ability of glazings arises largely from their wavelength dependent transmission. That is, they allow radiation of certain wavelengths to pass through while blocking the passage of others.

A good glazing material should allow **maximum** transmission of solar (short wave) radiation (expressed as the percentage of incident light that passes through). And it should keep heat loss to a **minimum** by preventing long-wave transmission and by serving as a barrier to heat loss. Long wave radiation or heat is radiated out from surfaces that absorb light in any collector system. By preventing the escape of this long-wave radiation, the collector heats up. This process is the familiar "greenhouse effect" (see Diagram C). Additionally, an ideal solar glazing should possess resistance to ultraviolet ray deterioration, good thermal stability, a high resistance to abrasion and weather, low maintenance and purchase costs, high fracture and Impact resistance, and ease of handling.

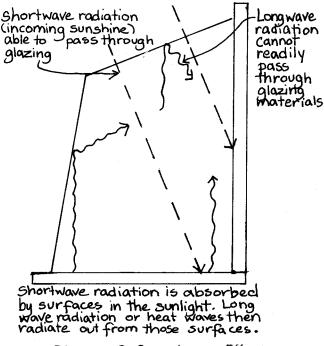


Diagram C. Greenhouse Effect

Commonly used glazing materials fall into two broad categories: glass and plastics. Glass, in a variety of forms and compositions is the proven performer against which other materials are usually judged. Table I summarizes the various types of glazings available. The information is based largely on manufacturers' ratings which cannot of course, always be accepted without qualification. The brands listed do not reflect a recommendation of any kind, but are chosen for

GENERAL TYPE	TRADE NAMES	COMMENTS	THICKNESS (inches)	SOLAR TRANSMITTANCE (%)	IR TRANSMITTANCE (%)	MAXIMUM OPERATING TEMPERATURE (°F)	ESTIMATED LIFETIME (years)	\$ / SQUARE FOOT	TRANSPARENT	TRANSLUSCENT	POUNDS / SQUARE FOOT
GLASS	DOUBLE	ADVANTAGES	.125	84	«3	400 +	25+	1.00	X		1.60
	STRENGTH INSULATED UNITS	 Excellent Transmissivity Characteristics Superior Resistance to Heat, U.V., Abrasions Low Thermal Expansion/Contraction Easily Available Transparent 	.625 ¹	71	«З	200 ²	25+	3.50- 7.00	X		5.
	SUNADEX LO-IRON	DISADVANTAGES Difficult to site fabricate Low Impact Resistance Cost 	.187	91	«3	400	25	2.25		X	2.4
ACRYLIC	PLEXIGLAS LUCITE ACRYLITE	ADVANTAGES • Excellent Transmissivity Characteristics • Superior U.V. & Weather Resistance • Won't Yellow	.125	89	«5	180- 200	20 +	2.00	X		.73
	DOUBLE WALL: EXOLITE SOP	 Lightweight East to Site Fabricate DISADVANTAGES Susceptible to Abrasions High Expansion/Contraction Rate Slight Embrittlement with Age Cost Relatively Low Service Temperatures 	.625	83	*5	160	20 +	3.00- 4.00		X	1.
POLYCARBONATE	MERLON	ADVANTAGES • Excellent Service Temperatures • Highly Resistant to Impacts DISADVANTAGES	.125	87	6	270	10- 15	3.25	X	X	.75
	TUFFAK- TWINWALL QUAALEX	 Poor Weatherability & U.V. Resistance (Yellows) Scratches Easily Not Easily Available High Expansion/Contraction Rate 	.220	79	«8	270	5-7	1.75- 3.00		X	.25
FIBER REINFORCED	LASCOLITE FILON	ADVANTAGES • Low Cost	.040 .040	81 82	«10	160 160	15 15	.60 .85		X X	5 oz 4 oz
POLYESTHER ³	KALWALL	 High Strength Superior Weatherability-Tedlar coated panels only Foundation and Justice and Justice 	.040	85		200	12	.85		X	5 oz
	DOUBLE WALL: KALWALL ROOF PANELS	 Easy to Fabricate and Install DISADVANTAGES Susceptible to U.V., Dust & Pollution Degradation Yellows with Age High Expansion/Contraction Rate 	1.500	70		N/A	12	5.00		X	N/A
LAMINATE: ACRYLIC/ POLYESTHER	FLEXIGARD	ADVANTAGES • Combines Weatherability of Acrylic with High Service Temperature of Polyesther • Good Transmissivity Figures DISADVANTAGES • Non-Reversible • Susceptible to Wind Flapping	.007	89	9.5	275	10	.40	X		5 oz.
POLYETHYLENE	VISQUEEN	ADVANTAGES • Inexpensive	.006	»85	»70	120	8 mos.	.02		X	.5 oz
	MONSANTO 602 (U.V. REISISTANT)	 Easy to Install Easily Available DISADVANTAGES Poor U.V. and Weather Resistance Low Service Temperature Cats LOVE to climb on the stuff 	.006	87		«160	2-3 yrs	.08		X	.5 oz

COMPAR	ISON OF	GLAZING MATERIALS	THICKNESS (inches)	SOLAR TRANSMITTANCE (%)	IR TRANSMITTANCE (%)	MAXIMUM OPERATING TEMPERATURE (°F)	ESTIMATED LIFETIME (years)	\$ / SQUARE FOOT	TRANSPARENT	TRANSLUSCENT	POUNDS / SQUARE FOOT
POLYESTHER	MYLAR LLUMAR (U.V. RESISTANT)	ADVANTAGES • Low Cost, Clear Glazing • High Service Temperature DISADVANTAGES • U.V. Degradable Unless Treated • Optical Clarity is Distorted	.001- .035 .0005- .014	85 88	*50 N/A	250 350	2 10	.08- .35 .50	x x		.25 oz. -10 oz.
FLUROCARBONS	TEDLAR PVF TEFLON FEP	due to Thinness of Material ADVANTAGES • Excellent Weatherability • Strong • High Solar Transmission DISADVANTAGES • High I.R. Transmission • Not Easily Available • Susceptible to Wind Flapping ADVANTAGES • High Solar Transmission • High Service Temperatures • Long Life DISADVANTAGES • Same as Tedlar PVF • Poor Tear Resistance	.004	90 96	»50 »50	300 400	10 25	.50	X	X	.5 oz.
SILICONE COATED CLOTH	DOW CORNING	ADVANTAGES • Good Transmissivity Characteristics • Excellent Service Temperature • Extremely Weatherable DISADVANTAGES • Susceptible to Wind Flapping and Tearing	.008	90	10	500 +	15+	1.00		Х	.5 oz.

FOOTNOTES:

- 1 2 panes of 3/16 inch tempered, float glass separated by 1/4 inch air space.
- 2 Higher temperatures will damage edge sealants on insulated units.
- 3 Greenhouse quality or better (not the stuff available at hardware stores which is a 2-5 year economy grade.

SOURCES:

- Thermal Storage Wall Manual, No. 1
- Solar Glazing: 1979 Topical Conference. Mid-Atlantic Sea, 2233 Gray's Ferry Avenue, Philadelphia, Pennsylvania 19146
- Modem Plastics Encyclopedia. Vol. 54, No. 104. McGraw Hill, Inc., 1221 Avenue of the Americas, New York, New York 10020
- Manufacturers' Data

NOTE: Much of the technical information in this chart was gleaned from Manufacturers' data.

Actual field performance may be different.

Costs are accurate as of April 1980 from Southwest regional distributors. Local prices may vary.

the availability of their specifications and for their ability to illustrate different generic types of glazings. Definitive data on any particular glazing materials of interest can be extracted from detailed manufacturers' literature or from appropriate reference materials in a technical library.

MASS WALL

The mass wall is the most crucial component of a Trombe wall type thermal storage wall. In it the solar heat will be stored and transmitted to the inside of the building. The material used for a mass wall IS, therefore, very important and is discussed in some detail below. Also important with a mass wall is the surface exposed to the sun. It is necessary that the surface of the mass wall absorb nearly all the light energy passing through the glazing. To do this, the surface of the mass wall should be a **dark** color. If using paint on the mass wall, it should be black or a very dark color and should be able to withstand the high temperatures reached in a Trombe wall collector. Darkening agents other than paints may be used, depending on the wall material. Wood stains have been used to darken adobe and concrete block. Cement stucco can easily be darkened with added pigments. Counter to much previously published information, there is apparently very little difference in absorption between flat and glossy paints, glossy paints being, in fact. better as they tend to pick up less dirt and dust.⁴

In selecting the material for a mass wall, two considerations should be made: cost and thermal characteristics. Given the common materials for mass walls - concrete, brick, adobe and stone - one should research the availability and cost of each before making any decision. Such information can usually be obtained from local brickyards and building supply outlets. Also take into account additional expenses such as forming costs for concrete, the expense of an experienced bricklayer, etc. "Do-it-yourself" Trombe walls, of course, save a great deal of money.

With thermal characteristics, we are interested in 1) how much heat a material can store, and 2) how rapidly that heat can be transmitted (by conduction) through the material and released to the inside air. These characteristics are determined by four physical properties of a material: density, conductivity, specific heat, and heat capacity.

Density, p, is a measure of how heavy a given volume of a material is, expressed for our purposes In Ibslft3. In general, heavier (more dense) materials tend to absorb and store more heat than lighter ones.

Thermal conductivity is a measure of how rapidly and easily heat can move through a material. The movement of heat is always due to a difference in temperature - heat moves from warmer to cooler parts of any material. The British Thermal Unit (Btu)⁵ is the commonly used measure of heat. A measure of conductivity is the number of Btu's able to pass through a given thickness of a square foot of a material in an hour if there is a 1 ° F difference in temperature from one side to the other. Thermal conductivity, k, is expressed in Btu ft/ft^2 hr °F.

Specific heat Cp, is a measure of the amount of heat needed to raise the temperature of a given mass of material, and is expressed in Btu/lb °F.

Volumetric heat capacity is a measure of how much heat can be stored in a cubic foot of material when being raised in temperature 1°F. It can be found by multiplying the density (p) of a material by the specific heat (Cp) and is expressed in Btu/ft³ °F.

⁴ NMSEA Southwest BULLETIN, January/February 1979, Volume 4, Number 1.

⁵ One British Thermal Unit (BTU) is defined as the amount of heat required to raise one pound of water one degree Farenheit

TABLE II

PROPERTIES OF COMMON BUILDING MATERIALS

Type of Material	Density p=lbs∕ft³	Specific Heat Cp=Btu∕lb°F	Conductivity K=Btu ft/ft²hr°F	Volumetric Heat Capacity Btu∕ft³ °F
Concrete ¹	144	.16	.540	23.0
Concrete ²	140	.20	1.000	28.0
Brick ¹	123	.20	.400	25.0
Limestone Rock ¹	103	.22	.540	23.0
Wood (Pine) ¹	27	.67	.063	20.8
Adobe ²	106	.24	.30 ³	25.0
Water ¹	62	1.00	.35 4	62.0

Sources:

1 Handbook of Fundamentals, 1977. American Society of Heating, Refrigerating and Air-Conditioning Engineers, New York, N.Y.

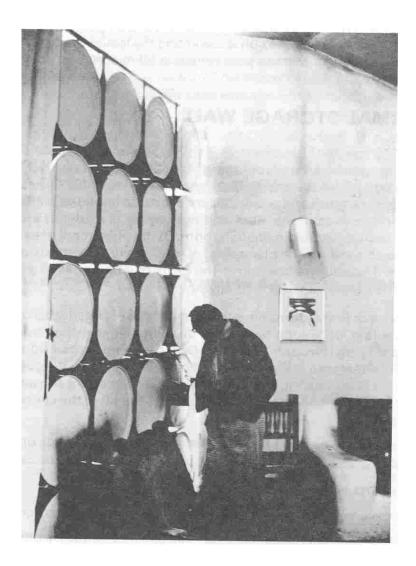
2. Mazria, Baker, Wessling, Predicting the Performance of Passive Solar Heated Buildings,

Reported values for the thermal conductivity of adobe range from .16 to more than .70 BTU ft/ft^2hr ° F. The conductivity IS largely dependent on moisture content-the hig her the moisture content. the higher the conductivity. For a complete discussion of this see B. T. Roger's article, "Effect of Moisture Content on the Thermal Properties of Sun Dried Adobe," in the NMSEA Southwest BULLETIN, September 1978, Volume 3, Number 9.

4. When **convection** is taken Into account. the *"effective* conductivity" IS much greater.

In addition to the massive building materials (concrete, brick, stone, adobe, etc.) there are other possibilities for a thermal storage wall. Water has been used extensively as a heat storage medium, and In fact IS In many applications superior to mass walls. Salt hydrates also have great potential in storing heat for solar applications.

Some properties of water are shown in Table II, Because it IS a fluid, convection currents distribute heat very quickly **(effective** conductivity close to Infinity. This property, together with the high volumetric heat capacity, allows a water wall to provide a greater **solar heating fraction** than a similar sized wall of concrete or some other massive material. Though often difficult to contain, water costs very little, so it can be very attractive to the solar designer/builder.


The properties of salt hydrates or eutectic salts are shown in Table III. The heat of fusion or **latent** heat absorbed and released with phase changes (i.e. melting or freezing) IS the property of most significance. A large amount of heat is absorbed by salt hydrates as they melt (when being heated up,) This heat is then released as the solutions freeze (when cold). The melting point is low, enabling this phase change to occur at temperatures reached in thermal storage wall-type collectors. One can see the tremendous potential of salt hydrates to store a great deal of heat in a small volume. Problems of cost containing the salts, and phase separation with continued cycles of freezing and thawing, however, have to date limited the use of salt hydrates for other than experimental systems. One can expect to see much research in this area and probably viable and cost effective use of salt hydrates in the near future.

In summary, the mass wall in Trombe wall collectors should be able to store a lot of heat (high heat capacity) and allow heat to readily move through (high thermal conductivity). Sizing the mass wall is covered in Chapter 3, "Design and Sizing."

TABLE III TABLE PROPERTIES OF SALT HYDRATES

	Chemical Compound	Melting Point, (F)	Heat of Fusion, (Btu∕l比)	Density, (Ib∕ft³)
Calcium chloride hexahydrate	CaCl ₂ 6H ₂ 0	84-102	75	10-2
Sodium carbonate decahydrate	Na 2 CO 3 10H 2O	90-97	106	90
Disodium phosphate dodecahydrate	Na ₂ HPO ₄ 12H ₂ O	97	114	95
Sodium sulfate decahydrate	Na ₂ So ₄ 10H ₂ O	88-90	108	91
Sodium thiosulfate pentahydrate	Na25035H20	118-120	90	104

Source: Maria Telkes, 1975, "Thermal Storage for Solar Heating and Cooling," from Proceedings of the Workshop on SOLAR ENERY STORAGE for Heating and Cooling of Buildings, April 1975, Charlottesville, Virginia, NSF-RA-N-75-041.

Chapter 3

Designing and Sizing a Thermal Storage Wall

SITE SELECTION

For any solar collector to operate effectively, it must be placed in a good location. The most important criterion for selecting a site for a solar collector system (such as a Trombe wall) is access to the sun. To insure that the site will have enough solar gain, the following must be determined: 1) where south is, 2) the sun's changing position in the sky during the day and year, and 3) potential shading of the site by existing structures, trees, etc.

The best site is one that faces due south. Some variation is possible, however, in most climates. Data from the Los Alamos Solar Group, suggests that a Trombe wall can face up to 20° east or west of south and still perform with acceptable efficiency.⁶

The sun changes position in the sky both during the day and throughout the year with the winter sun being lower in the sky than the summer sun. In selecting a site for any type of solar collector, one must determine whether nearby buildings or trees will provide unwanted shade and when that shading will occur. A large cottonwood tree that shades part of one's house in the summer may not be a problem in winter when the sun is lower and the leaves are off the tree. On the other hand, a neighbor's house may not shade your house at all in summer, but in winter may block your south wall completely.

SIZING A THERMAL STORAGE WALL

THE HEAT BALANCE

One of the most important parts of planning any heating system for a building is the determination of the size of the system. To do this, we must take into account the following: 1) weather conditions (temperature and wind) 2) desired inside temperature; 3) what the building is made of (wood frame, adobe, brick, etc.) and how well it is made; 4) areas of wall, ceiling, floors, windows, and doors; 5) volume of each room; 6) the placement of exterior windows and doors; 5) volume of each room; 6) the placement of exterior windows and doors; 5) volume of each room; 6) the basis of what is called a heat balance which will help us size the heating system of virtually any building.

A heat balance consists of first determining the amount of heat needed to keep the building at a specified temperature (e.g. 65°F for a residential building). This is done by calculating the heat lost from a building directly through its "skin" (walls, ceiling, etc.) and through cracks and vents (infiltration). This heat loss is then balanced by designing a heating system to replace the losses. In the case of a solar heating system this takes into account the available energy from the sun, the orientation of the collector surface to south, the tilt of the collector surface and the efficiency of the system.

There is some calculation involved in this process but luckily it involves only basic arithmetic.

⁶ NMSEA Southwest BULLETIN, February 1978, Volume 3, Number 2, page 2.

⁷ For more detailed information on the position of the sun in the sky at specific latitudes, consult sun angle charts in one of the following:

Bennett, Robert, 1978 SunAngles for Design.Available for \$ 5.00 from Robert Bennett, 6 Snowden, Bala Cynwyd. Pennsylvania 19004.

Anderson. Bruce, 1976 The Solar Home Book, Cheshire Books, Harrisville, New Hampshire.

HEAT LOSS

We will use two ways of describing heat. The first is its intensity or temperature (measured for our purposes in degrees Fahrenheit. °F). The second is its quantity. This is measured in British Thermal Units. (BTU's). One BTU is defined as the amount of heat that must be added to one pound (approximately one pint) of water to raise its temperature one degree Fahrenheit. Ten BTU's of heat energy will raise the temperature of that same pound of water 10° or *five* pounds of water 2°F and so on.

We want to find out how many BTU's are lost per day for every degree Fahrenheit (°F) difference between inside and outside temperatures (BTU's/degree day). The **degree** day⁸ is a very useful measurement for calculating heating demand. It is the number of degrees (°F) below 65°F for one day. For example, if on January 21 st. the **average** temperature was 25°F, 40 degree-days (65°-25°) would be calculated for the day. By adding up degree days, one can obtain monthly and annual degree days for a given area. Such figures are available from most weather stations around the country. Annual degree days for eighty-four cities are provided in Appendix A. Areas with a larger number of degree days require more heating. By calculating for a building the number of BTU's lost per degree day, it is very easy to calculate the total BTU's lost per month or year. This is done by multiplying the BTU/degree day figure by the number of degree days during the time period of interest.

We will now explain one method of doing heat loss calculations resulting in BTU's lost per degree day. Please note that there are other ways to calculate heat loss, resulting in different expressions for heat loss, but we will focus on BTU's/degree day because it is consistent with the sizing methods described in the section on "Solar Gain."

As described in the introduction, heat *moves* from warmer to cooler areas in one of three ways: radiation, thermal conduction, or convection. This *movement* or flow of heat can be retarded by placing something in its path. Such is the case with the walls, ceiling, windows, doors, etc. of a building.

Every building material resists the flow of heat to some extent. This ability can be given a numerical *value* which is called an R *value* (R for Resistance). The greater the ability of a material to resist heat flow, the greater the R value. These values are determined in laboratory tests done by organizations such as The American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE). See Table IV for a list of R values for some common building materials.

TABLE IV

R-VALUES FOR A FEW COMMON BUILDING MATERIALS

Material	R-value
½″gypsum Board	0.45
¹ ⁄2″ Plywood	0.62
Asbestos-Cement shingles	0.21
3 ¹ ⁄2" Fiberglass insulation	11.00
Stucco	.20 per inch

Source: New Mexico Energy Conservation Code.

Other sources of R-value tables include: Anderson, B. **The Solar Home Book**; Leckie, et. al, **Other Homes and Garbage**; **Handbook of Fundamentals**, 1977, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, N.Y.

⁸ Used here to mean heating degree day.

Knowing this Information will help us later to calculate the amount of heat lost through a building's "skin" To determine the total R value for a wall made of several materials we find the R value of each material in the wall, then add up these values. It must be noted here that even air has a resistance to heat flow. This applies to both "dead" air trapped in cavities In the building part, and to the thin films of air directly In contact with the surfaces of the building parts. (See

examples 1 a and 1 b.)

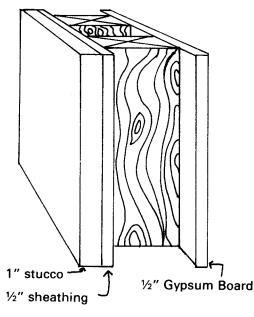
Another way of looking at how a building part reacts to heat is to measure its ability to **transmit** heat. This ability can also be given a numerical value, which is called a U value, the inverse of an R_T value. Mathematically the U and R values are reciprocals of one another. In other words U= 1/Rt.

The lower the U value, the lower transmission of heat. Note: U values are determined from the total R value and cannot be added.

U values are expressed in terms of BTU per square foot of building part per degree Fahrenheit difference between Inside and outside temperatures per hour, or BTU/ft² of hr. Thus, if a wall has a U value of .27 this means that if we were to measure the flow of heat through one square foot of the wall for one hour during which the difference in temperature inside to outside was one degree Fahrenheit, we would measure a flow of .27 BTU's. This suggests a simple multiplication problem which will give us the amount of heat loss through any building part in one day for any given set of conditions. All we need to know are three quantities: 1) U value of the building part. 2) size of the building part, and 3) time: 24 hours/day. Our multiplication problem is the following:

U value (BTU/ ft^2 of hr) x Building Part Size (ft^2) x 24 hours/day.

This gives us the heat loss through the building part in BTU's per degree day. (See examples 1a and 1b.)

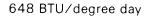

By calculating the heat loss of each building part and adding them all together we can arrive at the total heat loss per degree day through the building skin. Note that areas of doors and windows should be subtracted from areas of the walls they perforate and be subjected to separate calculations.

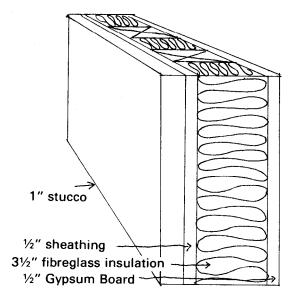
To calculate the infiltration heat loss we must know the volume of air in each room. Then we must estimate the amount of air that will infiltrate into each room from the outside. This IS usually expressed in terms of air changes per hour with one air change per hour meaning that all the original warm air in a room has been replaced by cold air over the period of an hour. This IS determined by a rule of thumb method based on the number of sides of the room which have doors and windows with outside exposed as shown in the following table.

Evaluating each room in this manner will give us the total volume of air we need to heat up. We now need to know how much heat is needed to raise the temperature of the air and how much we need to raise its temperature. It takes .018 BTU to raise one cubic foot of air one degree Fahrenheit. That doesn't sound like much, but as we will see, massive amounts of air can flow through a building in a day. The .018 figure is based on sea level. Thinner air at higher altitudes need less heat to raise its temperature. Altitude correction factors have been developed which must be multiplied by .018 if the building In question is above sea level.

EXAMPLE I

cross-section of wall




CONDUCTIVE HEAT LOSS

 Ia. Find the amount of heat loss in Btu/DD of a 10' by 10' uninsulated wall.

10' by 10' uninsulated wall.						
Component	R-value					
outside air film	.17					
1" stucco	.20					
1/2" sheathing	1.32					
31⁄2" dead air space	1.01					
1⁄2″ Gypsum Board	.45					
inside air film	.68					
Rtota	al = 3.73					
ι	J =₊27 BTU∕ft² °F hr					
heat loss = Uvalue x	< Area x Time					
heat loss = <u>27 BTU</u>	<u>x 100ft² x 24 hours</u>					
ft² °F hr	1 day					
heat loss = 648 BTU/	∕°F day					

or

Ib. Find the amount of heat loss of the same wall with fiberglass insulation.*

Component	R-value	
outside air film	.17	
1" stucco	.20	
1⁄2" sheathing	1.32	
31⁄2" fibreglass ins.	11.00	
1⁄2″ Gypsum Board	.45	
inside air film	.68	
Rtotal	= 13.72	
U	= .07	
heat loss = Uvalue x /	Area x Time	
heat loss = $.07 \text{ BTL}$ $f^2 \text{ °F hr}$		urs

heat loss = 168 BTU/Degree Day

* It IS important to note that a more accurate heat loss calculation should separate heat loss through the Insulated wall sections and heat loss through the stud or wood areas off the wall. Wood is not as good an insulator as fiberglass batts (R value of softwoods = 1.25/inch), so in Example 1 b, more complex calculations are necessary. The Rt for wood areas of the stud wall (as calculated for Example Ib) is 7.2 (U=.14), while for the rest of the wall, Rt=13.7 (U=07). I n a stud wall with 16 Inch on-center studs, wood (the studs) comprises about 20% of the wall area, and for a 24 inch o.c. stud wall, wood comprises about 10% (ASHRAE). Therefore, with a 161nch o.c. stud wall, one would use the following equations to calculate actual heat loss in BTUS/degree day:

U value of Insulated wall section (BTU/ft^2 of hr) x Area of entire wall (ft^2) x .80 (percentage of total x 24 hrs/day wall area without

plus Uvaueofwaseton(BTU/ft^2°Fhr)xAreaofentrewa(ft^2)x 20(percentageoftotal x 24 hrs/day wall area comprised of studs)

In reality, most people disregard the studs In doing heat loss calculations - producing slightly low heat loss totals

TABLE V

AIR CHANGES PER HOUR

Kind of Room	Number of Air changes per hour*
Rooms with no windows or exterior doors	0.5
Rooms with windows or exterior doors on one side	1.0
Rooms with windows or exterior	1.5
doors on two sides Rooms with windows or	1.5
exterior doors on three sides	2.0
Entrance halls	2.0

*For rooms with weather-stripped windows or with storm sashes. use two-thirds these values.

Source: Handbook of Fundamentals, 1977, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc... New York. N.Y.

TABLE VI

ALTITUDE CORRECTION FACTORS

Altitude (ft)	Correction Factor	Actual Btu's needed to raise the temperature of one cubic-foot of air one degree F.
Sea level	1.00	.018
100	.97	.017
2000	.93	.017
3000	.90	.016
4000	.86	.015
5000	.83	.015
6000	.80	.014
7000	.76	.014
8000	.73	.013

Source: Dr. Francis Wessling's classroom notes. Engineering Department, U.N.M., Albuquerque, N.M.

EXAMPLE II

INFILTRATION HEAT LOSS

How much heat is lost by infiltration per degree day by a 10' by 10' by 10' room with a door on one exterior side in Santa Fe. New Mexico (altitude 7.000 ft)?

Infiltration = Volume (ft^3) x Air changes per hour x heat

capacity of air (Btu/ft^3 OF) x time 24 hrs/day

Heat Loss

= 1000 ft^3 \times 1.0 air changes/hr x 0.014 BTU /ft³ °F x 24 hrs/day

Infiltration Heat Loss = 328 BTU/degree day

This process is repeated for each room. The results are added to give the total infiltration loss. Alternately, infiltration heat loss can be calculated for the entire building without separate calculations for each room. Calculated infiltration loss is usually 30-35% of the heating load. Recent studies by J. L. McGrew of Applied Science and Engineering of Littleton, Colorado indicate that in some cases infiltration losses can be 60% or more of the heating load.⁹ This type of heat loss is often the easiest to cut down through weather stripping and other infiltration inhibitors.

The heat loss for a building is then added to the total infiltration loss to give the building's total heating load. This total heating load is what one must design a heating system to satisfy. In other words, this heat loss must be replaced by the heating system to maintain the desired comfort levels.

SOLAR GAIN

Once the total heating load of a building has been calculated, one can determine either: case a) for a given sized Trombe wall, what percentage of the total heating load can be obtained, or case bl how large a Trombe wall is necessary to provide the desired heating demand. There are a number of methods for determining these values and there is work being done to simplify and standardize the calculations. We are including here the method developed by J. Douglas Balcomb and Robert D. McFarland of the Los Alamos Scientific Laboratory.¹⁰

This method, of necessity, has been prepared for a specific thermal storage wall system (basically a doubleglazed, 11/2 foot thick concrete wall). A complete list of assumptions is shown below:

Vertical, south-facing glass Wall absorptance = 1.0 Ground reflectance = 0.3 No shading Thermal Storage = 45 BTU/°F ft2 of glazing Trombe wall has vents with back draft dampers Double Glazing (normal transmittance = 0.747) Temperature range in building = 65 to 75° Other building mass is negligible Night insulation (when used) is R9; 5 pm - 8 am Wall to room conductance = 1.0 BTU/hr of ft² Trombe wall properties: thermal conductivity (K) = 1.0 BTU/ft hr °F volumetric heat capacity = 30 BTU/ft^3 °F

Temperature data from eighty-four cities as well as performance efficiencies of Trombe walls and water walls, have been calculated into the load collector ratio figures (shown in Appendix A) to create an easy to use procedure. In the following section, "Designing a Thermal Storage Wall," we will describe how variations from the parameters or assumptions shown above will affect Trombe wall efficiency and performance.

Step 1

Calculate the Building Loss Coefficient in BTU/degree-day as described in the heat loss section (page 12).in this calculation, the collector /thermal storage wall should not be included in the load.

J. L. Mcrew. 1978. "Heat Loss and Found," Applied Science and Engineering of Littleton, Colorado.

¹⁰ J. D. Balcomb and R. D. McFarland, 1978, "A Simple Empirical Method for Estimating the Performance of a Passive Solar Heated Building of the Thermal Storage Wall Type."

Step 2 - Case A

If working with a thermal storage wall of a certain size and interested in what fraction or percentage of your heating demand it will supply. calculate the Load Collector Ratio (LCR) as follows:

Load Collector Ratio = Building Loss Coefficient (BTU/D-D) Solar Collection Area (ft²)

In calculating the Load Collector Ratio, the solar collection area used should be the net glazed area (the actual solar collection aperture) and not the gross area of the thermal storage wall.

Step 3 - Case A

In Appendix A. locate the city of interest (or the one most closely representing the climate of the area of interest.) If the Load Collector Ratio determined in Step 2 corresponds exactly to one of the values of Solar Heating Fraction (SHF) listed in the table, then this Solar Heating Fraction is the fraction of your total heating load that will be supplied by the thermal storage wall. If not. one needs to interpolate the actual Solar Heating Fraction from the data in the table. As used in this method, the SHF is the fraction of the degree days for the area of interest times the Building Loss Coefficient (BTU's/degree day) which is supplied by the thermal storage wall. The wall is not credited with the heat used to supply its own steady-state load since a "normal" south wall would presumably have a much lower loss coefficient and would inevitably benefit from solar gains, even if they are unintentional.

One can see that once the solar heating fraction has been determined, it is easy to calculate how much supplemental or auxiliary energy is necessary during a year to maintain 65°F. The following equation can very simply be plugged into:

Auxiliary Energy = (1-SHF) x Annual Heating Degree Days x Building Loss Coefficient (BTU/yr.) (BTU/°F day)

Step 2 - Case B

Often when designing a passive solar building, it is important to know how large the thermal storage wall must be to provide a **desired solar heating** fraction. This calculation can easily be done using Load Collector Ratios provided in Appendix A and the following equation:

Simply find in Appendix A the Load Collector Ratio for the desired Solar Heating Fraction and the location of interest. Plug that figure and the Building Loss Coefficient (from the heat loss calculations) into the above equation, and the solar collection area (in ft^2) for a thermal storage wall will be found. This will be the net glazed area of a thermal storage wall necessary to provide the desired solar heating fraction. After determining that area, one may decide too much wall would be necessary for the house design or that more wall space could be utilized. If such were the case, the calculations could be re-done changing the solar heating fraction or some other variable.

EXAMPLE III

SOLAR HEATING FRACTION

A 72' x 24' building in Dodge City, Kansas is to be constructed with a 309 sq ft water wall on the south side. The water wall will contain 45 lbs of water per sq ft of south glazing for a total of 13,500 lbs of water or 1,618 gallons. The wall is double glazed with normal sealed glass units which have a net transmittance of 0.74 for sunlight striking the glass perpendicularly. Other than the thermal storage wall, the building is of light frame construction with little additional mass. It is desired to estimate the annual solar heating contribution.

Skin Conduction

Surface Type	Area (ft ²)	U-Value BTU∕ft²°F hr	U x A BTU∕°F hr
Water Wall Opaque Walls Windows (E,W,N) Roof Floor	309 1107 120 1728 1728	(not included in 0.07 0.55 0.05 0.05	BLC) 77.5 66.0 86.4 86.4
Building Skin Conductance	e =		316.3
Infiltration:			
(12320 ft ³) (½ ACH) (0.018) =		<u>110.9</u>
Total: Building Loss Coeff	icient =		427.2 BTU/hr°F = 10250 BTU/DD

The building is tightly sealed and equipped with an air-lock entry and thus the infiltration can probably be held to the minimum recommended level of 1/2 air change per hour.

(Step 2) The building south wall is glazed with 18 standard patio door size sealed double glass units each with a net effective exposed area of 75 x 33 in. for a total of 309 sq ft of collection area. Thus the Load Collector Ratio is 10250/309 = 33.2 BTU/degree-day-sq ft.

(Step 3) In the table for Dodge City, Kansas we find the following entries for the case of a water wall without night insulation:

SHF	0.30	0.40	0.50	0.60
LCR	61	43	31	23

Our Load Collector Ratio of 33.2 lies between the two values of 0.40 and 0.50 Solar Heating Fraction. By interpolation we obtain:

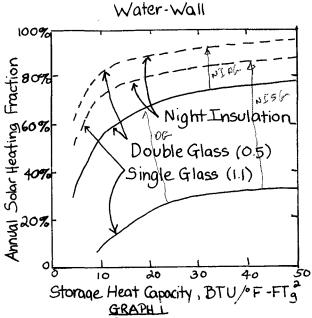
$$SHF = 0.48$$

The energy saved by the installation of the solar wall is estimated as (0.48) (10250) (4986) = 24.5 MBTU/yr.

The auxiliary energy can be estimated as:

Auxiliary Energy = (1-0.48) (10250) (4986) = 26.6 MBTU/yr.

DESIGNING A THERMAL STORAGE WALL


Information on glazings, wall materials, heat loss, solar heating fraction calculations, and a brief overview of thermal storage wall principles have been presented. In this section, information on components of thermal storage walls is presented In terms of actual designing. For people working with design of thermal storage walls, this is probably the most useful section. It should be used, however, **with** the other information presented in this manual.

THERMAL STORAGE WALL GLAZINGS

For thermal storage walls double glazing is recommended in most areas. Graph 1 illustrates this for a waterwall (showing also the added benefit of night insulation). The inner glazing should be able to withstand high temperatures - that is. it should have a high "maximum operating temperature."¹¹ An unvented Trombe wall can reach 200°F at the exterior of the mass wall and

¹¹ See Table 1-A Comparison of Glazing Materials

EFFECT OF STORAGE MASS WALL

Source: Passive Solar Building: A Compilation of Data and Results vented Trombes can reach 160°F although average temperatures are much lower. The inner glazing temperatures will be similar to those of the exterior of the mass wall although slightly lower.

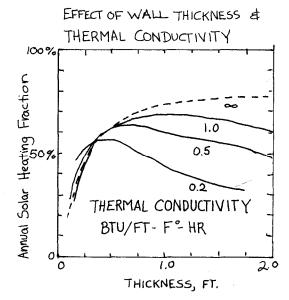
The outer glazing should be durable. It will be directly exposed to weather and harsh ultra-violet rays. But temperatures reached by the outer glazing will not be as high as those that the inner glazing is exposed to.

Although glass is the **best** Trombe wall glazing material, various considerations such as cost, ease of handling (especially for a non-professional builder), and possibility of breakage, often make it preferable to use plastic and/or fiberglass glazings.

Polycarbonates, fluorocarbons, and polyvinyl fluorides are all good inner glazing materials in terms of heat resistance. Polyethylene and fiberglass, on the other hand, will degrade much more quickly than their projected lifetimes (see Table 1, page 6) if used as an inner glazing Because of fairly good durability properties and low cost "greenhouse quality" fiberglass makes a good outer glazing.

AIR SPACE BETWEEN GLAZING AND MASS WALL

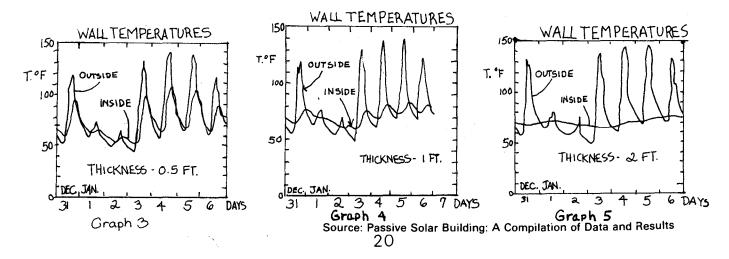
Several factors should be taken into account when deciding on the distance between the inner glazing and the mass wall of a Trombe or thermal storage wall. If the air space is too thin (less than one-half inch), heat loss will be large, and, with vented Trombe walls, air circulation will be restricted - preventing good heat transfer into the building. With a very large air space (greater than about six inches), heat losses could be large at the top and sides and the large framing members could cause a shading problem.


Using standard two-by-fours for framing the glazing of a thermal storage wall has proven quite successful (allowing a 3 ½ inch air space between the glazing and mass wall) and minimizes lumber expense. If heavy glass is being used for the glazing, sturdier lumber than two-by-fours may be necessary. If unsure about the structural framing requirements for the glazing area of a Trombe wall, it may be worthwhile to contact a local builder, contractor, architect, or engineer.

MASS AND WATER WALLS

The Balcomb, McFarland Solar Heating Fraction calculations presented give a very good idea of how a thermal storage wall will perform in various areas around the country. However, as mentioned previously, the procedure was developed for a very specific set of parameters (i.e.

double glazing, no shading, 0.3 ground reflectance, 18 inch thick concrete wall). In this section, variations in the thermal storage wall will be discussed to give an idea to the reader of how performance and efficiency are dependent on design and materials.


The mass wall in a Trombe wall collector should have a good ability to store heat (a high heat capacity). It should also have a high thermal conductivity (see Graph 2). If the conductivity is too low (as for wood), heat cannot easily move through the material even if that material can store a lot of heat (high heat capacity). This becomes clear when one realizes that for a mass wall of low conductivity, if the wall is too thick, heat will not be able to move through it easily. If a material has high conductivity, heat will move through it readily and a thicker wall will be quite effective. Graph 2 shows the optimal thicknesses for walls of different conductivities.

Graph 2

Source: Passive Solar Building: A Compilation of Data and Results

Graphs 3, 4, and 5 indicate that the thicker a mass wall, the smaller the variation of temperature inside the wall. This might seem a contradiction. It can be determined from Table II and Graph 2 that the ideal thickness for a concrete mass wall is slightly less than a foot while Graphs 3,4, and 5 seem to indicate a thicker wall is better. The optimization shown in Graph 2, however, was for the maximum yearly solar heating - the **efficiency** of a Trombe wall. In terms of **performance**, a thicker wall (though less efficient) may be more desirable: it will keep a more constant inside temperature. There are no readily available charts or diagrams to illustrate this point; one must take into account both the **overall solar heating efficiency** of a wall of certain

thickness, and the **comfort level** it affords. Although one will get the maximum yearly amount of solar energy into a building by following Graph 2 for wall thickness, he or she may wish to sacrifice some of that heat for a smaller daily temperature variation (via a thicker wall).

One can see from the information provided here that concrete is the most effective mass wall material and that to operate at **maximum efficiency**, it should be about ten to twelve inches thick.

Thicker walls result in lower temperature swings on the inside wall and greater time delays between temperature peaks of the outside and inside wall surfaces. Data for variations in wall thickness of a concrete wall are shown in Table VII.

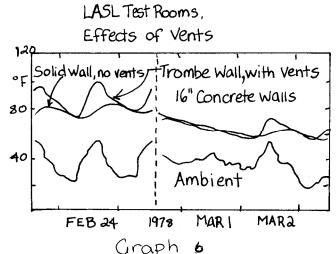
TABLE VII

Thickness, Inches	Inside Surface Temperature Swing	Time Delay of Peak on the Inside
8	40°F	6.8 hrs
12	20°F	9.3 hrs
16	10°F	11.9 hrs
20	5°F	14.5 hrs
24	2°F	17.1 hrs

Source: J. D. Balcomb, "Designing Passive Solar Buildings to Reduce Temperature Swings," LASL.

As discussed in the "components" section (page 9), water can be very effective for thermal storage walls. Because of the very high effective conductivity (due to convection), heat moves very quickly through a water wall resulting in usable heat inside the building early in the day. This early heat-up can be very useful in buildings such as schools and offices where heat is needed primarily in the daytime. But in other applications where evening and nighttime heat is more important, the rapid heat-transfer can be a disadvantage. While high conductivity allows heat to rapidly move **into** a thermal storagewall it also allows heat to rapidly move **out.** Cool-off in the evening will be quicker with a water wall than mass wall, and there will not be the characteristic **wave** of heat that moves through a mass wall reaching the inside wall surface 610 hours after the temperature peak on the outside wall surface (see Table VII and Graphs 3-5).

Generally a water wall utilizes containers such as 55 gallon drums or rectangular 17 gallon ammunition cans that are painted a dark color, stacked and filled with water. Steve Baer's home in Corrales, New Mexico provides a very good example of a water wall with 55 gallon drums. Other water walls are more complex. The Gunderson house outside of Santa Fe, New Mexico utilizes a thermal storage wall with both concrete and water. Sealed containers of water (eight inches thick) are sandwiched between two-inch concrete slabs.

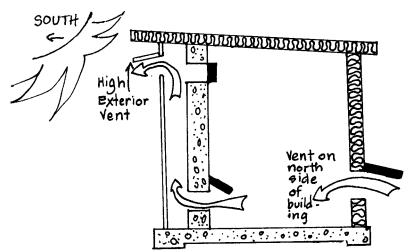

As discussed in Chapter 2, Mass Wall section, salt hydrates or eutectic salts provide another alternative for the thermal storage wall. The use of salt hydrates for solar vent storage is increasing at a rapid rate and one can expect to soon see their widespread use around the country and world.

VENTING FOR THERMAL STORAGE WALLS

As mentioned in Trombe Wall Overview, Trombe walls may be of two types: vented or unvented. While an unvented Trombe delivers heat to the inside of a building by conduction and radiation, a vented Trombe additionally heats a building during the day by means of hot air **convection**. Diagram B (page 3) illustrates this principle showing a **convective loop** operating during the day with the vents open. This circulation will continue as long as the air in the collector is heated above the room temperature. While the daytime heat is being delivered to the building by

means of air convection, the mass wall is steadily being charged with heat which will be radiated into the building at night as with all Trombe walls. In vented Trombes, convection of air provides about 30% of the heat supplied to the living area by the Trombe wall, while conduction and radiation supply the other 70%.¹²

A vented Trombe will result in more temperature variation in building than an unvented Trombe (see Graph 6). Inside temperatures will get higher during the day and temperatures may drop lower at night with a vented Trombe wall. Overly high inside temperatures can be reduced by providing enough thermal storage materials **inside** the building such as brick floors, concrete or brick partition walls, etc. These materials will absorb extra daytime heat. thus evening out the daily temperature swing. Vents are generally desirable when heat IS most needed during the day - (e.g. in a school or office building).



Source: J. D. Balcomb. R. D. McFarland and S. W. Moore, Passive Testing at Los Alamos Data on overall thermal efficiency of the two types of Trombe walls is hard to come by (see Graph 6). The air between glazing and mass wall reaches higher temperatures in an unvented Trombe wall, so heat loss through the glazings of these Trombe walls tends to be somewhat greater. But with a vented Trombe wall system, not as much heat is stored in the mass wall. Therefore, if infiltration heat losses are great in the building (poor insulation. air leaks. etc.), less heat will be available in the evenings. Of course, if a Trombe wall system is built with vents through the mass wall, and daytime overheating or lack of nighttime heat proves a problem. the vents could be closed reducing the problem.

On the subject of vent sizing and placement, it is necessary to clearly differentiate between two types of vents: inner vents through the mass wall, and outer vents through the glazing. If overheating is expected to be a problem (e.g. in much of the Southwest), outer vents should be included in any Trombe wall design (unless removable insulators are used). If inner vents are **not** being built, both **upper and lower** outer vents would be necessary to adequately vent the collector area during the summer to keep the mass wall from heating up too much. If inner vents **are** being used, only high outer vents would be necessary because the lower inside vents could serve to bring cool air into the collector area (see Diagram D).

For either inner or outer vents to work best, the distance between high and low vents should be as large as possible. It is important that the high vents are at least as large in area as the low vents so as not to impede air flow. Some people suggest that the high vents should be somewhat larger to insure free movement of the warmer, relatively expanded air, though this is not necessary.

12Balcomb et al. "Passive Solar Heating of Buildings"

Diagram D — The Use of Vents for Summer Cooling

How large the vents should actually be and how many one should have is a question on which there is no definitive information. Dr. J. D. Balcomb of the Solar Division of Los Alamos Scientific Laboratories suggests a total combined vent area of 1 to 2% of the total Trombe wall area.¹³ If too much wall area is taken up by vents, too little heat will go into the wall. If vents are too small, there will be less convection of daytime heat into the room. Several upper and lower vents spaced evenly across the wall will operate more effectively than one large localized vent because the convective airflow will be more even. This is true for both inner and outer vents. For the inner vents; vertically offsetting the vents (so that upper vents are not directly above lower vents) allows for better transfer of heat into the building than if upper vents are directly above lower vents. This is because the flow of air into the building (through upper vents) and out of the building (through lower vents) cannot be as direct, resulting in heat moving further into the room.

There are several possibilities for actual construction and operation of the vent closures. Outer vent covers should be clear or translucent like the glazing to allow light to penetrate. Alternately, vents can be cut through the wood framing. Inner vent covers can be of any material, though one that insulates against heat loss when closed is best. The simplest system for inner vents uses Styrofoam or some other material cut to fit into the vent opening - it is removed to open the vent. Other systems include hinged vent covers that are manually opened and closed, controlled by a thermostat, or controlled by heat-sensing motors (these devices push out a piston when heated - the piston can be used to open vents when the collector area heats up). Another possibility for inner vent closures, developed by Doug Kelbaugh, is a simple "automatic" damper. The damper consists of hardware cloth or screening across the vent opening, with a section of thin flexible polyethylene taped on the air out-flow side. The system allows air to flow in the direction of the daytime convective loop (see Diagram B, page 3) but prevents a reverse convective loop from forming. The use of vents is covered under Operation and Performance.

SOUTH ROOF OVERHANG

Diagram E illustrates how the south roof overhang of a Trombe wall house can effectively be used to keep a building cool in the summer but allow adequate heating in the winter. In the summer months the sun is high in the sky (78° maximum in Santa Fe, New Mexico -latitude of 36°N) and the Trombe wall collector is shaded from the sun's rays. In winter, with the sun much lower in the sky, the Trombe wall is in full sun all day. In spring and fall months, some percentage of the wall will be shaded by the sun and partial heating will result.

¹³ Personal communication.

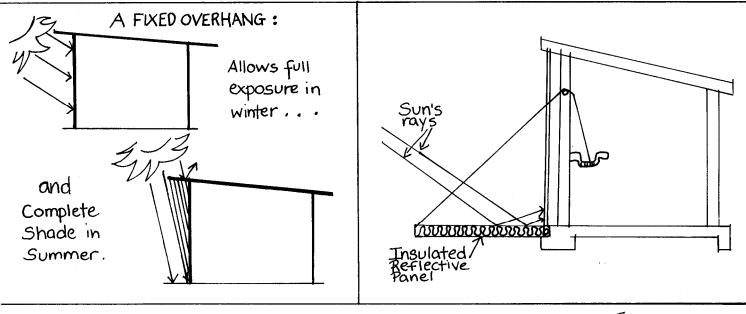


Diagram E

Diagram F

The optimal overhang distance can best be calculated using 1) **Sun Angle Chart** which is specific for a given latitude, 2) a scale drawing of your Trombe wall house, 3) an architect's scale and 4) a protractor. From a Sun Angle Chart one can easily find the altitude of the sun (height above the horizon in degrees) at different times of the day and year. With the maximum summer sun altitude and minimum winter sun altitude, one can draw lines through the tip of the overhang (see Diagram E) at those prescribed degrees using a protractor and ruler and see where the sun will strike the Trombe wall. If a great deal of the wall is exposed to the sun in summer, lengthen or change the angle of the overhang. If too little sun falls on the wall in winter, shorten or tilt up the overhang in the drawing.

Other systems such as movable or adjustable overhangs and "organic shades" (climbing plants, sunflowers, grapes, etc.) can allow more control. Fall is the most difficult season to design for in terms of overheating because of warm temperatures and a fairly low-altitude sun. Spring is a difficult season for heating. Some form of adjustable shading can be very important for these times.

INSULATORS AND REFLECTORS

A "standard" Trombe wall, either vented or unvented, can provide a substantial portion of one's heating demand. The exact amount, of course, depends upon the size of the Trombe wall relative to the heat requirements of the house, orientation of the Trombe wall, climatic conditions in the region, etc. Certain adaptations can be made in the standard design, however, which will substantially improve the efficiency by controlling solar gain and heat loss.

The fold-down insulated reflector shown in Diagram F is a good example of such an adaptation. In the winter, the insulated panel with a reflective surface can be hinged down during the day so that it will reflect additional light onto the Trombe wall collector surface. At night, it can be pulled up and the insulation will reduce heat loss through the Trombe wall glazing. In summer months, with such a system, one could leave the panel up during the day preventing all solar gain and thereby keeping the house cool.

Of course other applications of this idea are possible, including very simple removable Styrofoam insulating panels or a light-colored patio in front of the Trombe wall which will reflect some additional light onto the collector surface. Adapting a Trombe wall, as with any passive solar heating system, is merely a matter of common sense, creativity, ingenuity, and correct information. The information in Appendix A - for use in calculating the heating fraction a thermal storage wall will provide - has figures for both thermal storage walls without night insulation, and with it.

Chapter 4

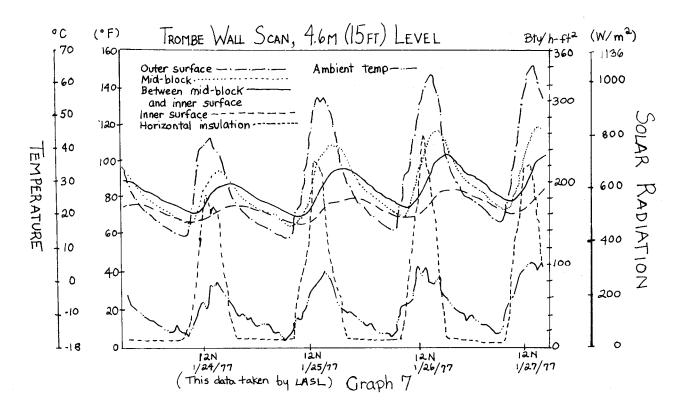
Operation and Performance

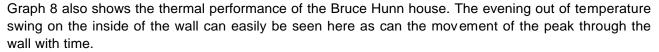
OPERATION

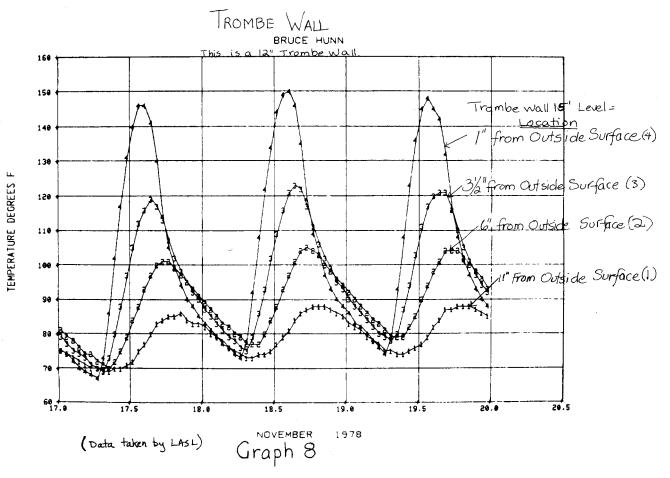
The operation of a Trombe wall will vary with the seasons, and the user's needs. The tilt of reflectors can be adjusted as the sun moves higher and falls in the sky (in spring and fall especially). Most important in the operation, however, are the vents.

We have described below how vents through the mass wall and through the glazing are used in winter daytime operation, winter nighttime operation, and summer operation.

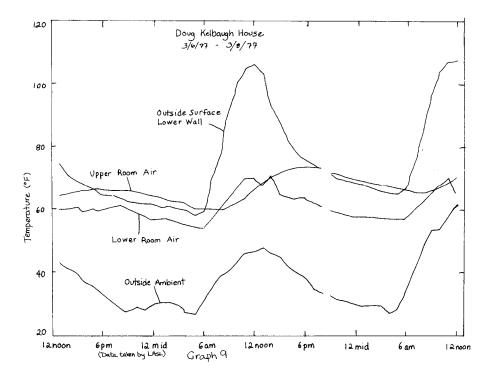
During winter daytime operation when heat is desired in the building, the high and low vents through the mass wall are opened. As the sun strikes the dark surface of the mass wall, the air between the glazing and mass wall heats up, expands, rises to the top of the air space and escapes through the upper vents into the building. As warm air leaves the Trombe collector area, cooler air is drawn into the collector through the low vents from the building. This cool air, in turn, is heated, expands, rises, and passes back into the building, thus setting up a natural air circulation pattern.

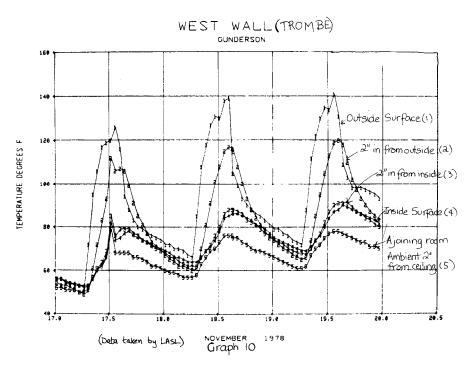

On winter nights it is important that all vents be **closed.** If they are left open, a **reverse convective loop** can be set up. Because heat can readily escape through uninsulated Trombe wall glazing, the collector air space cools off until that air is cooler than air inside the building. At this point, if the mass wall vents are open, warm air from the building would enter the Trombe wall collector area through the upper vents, cool off, and return to the building.


In the summer months when heating is **not** desired, the upper mass wall vent should be **closed** and the lower mass wall vents and upper outside (glazing) vents should be **open** (see diagram D). A window on the north side of the building should also ideally be open to allow relatively cooler air to flow freely through the building and into the Trombe wall collector. As air in the Trombe collector is heated, it expands, Rises, and flows out the vents to the outside drawing air behind it from the building (this is called the chimney effect). This constant flow of relatively cool air will prevent the collector air and mass wall from heating up much and thus keep the building cool. With these vents open, heat will escape from the building both during the day and night.


THERMAL PERFORMANCE OF THERMAL STORAGE WALLS

Some actual data on the performance of thermal storage walls are shown below. Graph 7 illustrates the thermal performance of Bruce Hunn's house in Los Alamos. New Mexico. The data were collected on four consecutive days in January, 1977, and show the movement of heat through the wall.


The inner wall surface, which faces the interior of the living space, shows a relatively smooth daily temperature rise and fall. The temperature of this surface may reach as high as 90°F around 6-8 pm each day. As it gives off its heat to the room all night, its temperature gradually decreases, until it reaches the lowest temperature shown, 68°F. The wall is, in effect, a room size radiant heating panel which, even with the 0-1 °F outside (ambient) temperatures of 6:00 am, continues to radiate at temperatures well within the commonly accepted 65°F home comfort minimum. It can also be seen that the outer surface of the wall daily reaches temperatures as high as 156°F, and may go as low as 60°F during the night. This daily temperature swing decreases the farther into the wall that the temperatures are measured.



Graph 9 shows the thermal performance of the Doug Kelbaugh house in Princeton, New Jersey. The data shown were collected during a two-and-a-half day period in March, 1977 and show similar thermal performance. Although mid-wall temperatures are not shown, the large fluctuation of outside wall surface temperature and the small fluctuations of the inside room temperature illustrates the Trombe wall's effect in reducing interior temperature swing.

Graph 10 shows performance of the Gunderson water/concrete wall (described on page 21).

The Bruce Hunn Trombe wall is unvented but equipped with blowers to circulate hot air from the Trombe collector to a rock storage bed. The Doug Kelbaugh house is heated with a vented Trombe wall and is totally passive. Both owners are very satisfied with their homes, and comment on the comfort of **radiant** heat provided through the wall.

THERMAL STORAGE WALL VARIATIONS

There are many possibilities for variation from standard thermal storage wall designs. A specific design should depend on four basic criteria: 1) resources, including money, and building supplies; 2) heating requirements; 3) building uses, and 4) the geographical and climatic location of the site.

Low cost designs of thermal storage walls might include fiberglass and plastic glazing materials rather than glass, and mass walls of adobe (see Table I) or 55-gallon drums filled with water. Performance of the glazing at expected temperatures should be taken into account. As mentioned, building one's own thermal storage wall will result in a very substantial savings of money.

More expensive thermal storage walls might use two or even three layers, dependent on climate, of high-quality glass and more attractive wood for framing the glazing. Venting arrangements could also be more elaborate - utilizing perhaps rather expensive heat-driven pistons.

In hot climates, such as the southwestern and southeastern United States, cooling should be a major emphasis. Vents through the glazing are very important as are shading considerations. A removable cover for the Trombe wall collector could also be utilized to keep the sun off it in warm months. Efficiency of the Trombe wall is not as important in warm climates as it is in cool ones. In an area with a great deal of sun, the storage wall could be designed **thicker** than the optimal thickness for thermal efficiency. Not as much heat would ultimately get into the building, but a more constant and comfortable inside temperature would be maintained.

In cool climates, and those with little available sunlight (Northern U.S., Canada), the thermal storage wall design would have to be very efficient. The optimal mass wall thickness chart (page 20) should be followed closely even though it might mean greater temperature fluctuations inside the building. Reduction of heat loss should be a priority; if the heating requirements are reduced for a house, the thermal storage wall will supply a larger percentage of necessary heat. An insulated reflector such as the one shown schematically on page 25 should be used. Tilting the thermal storage wall collector is another option. If the collector surface is perpendicular to the winter sun's rays, it will be more efficient. so a tilt of 10-30° for northern climates might be worthwhile, although a bit more difficult to construct.

The expected **use** of the building should also have bearing on its design. A building used only during the day, such as most schools and office buildings, would not need to store as much heat so the mass wall could be thinner. Also, such a building should definitely have vents through the mass wall to allow for convective heating. A home largely unused during the daytime hours, on the other hand, should have a relatively **thick** mass wall able to store a large amount of heat. It should also be thick enough so that the heat radiating into the living areas will reach a maximum in the evenings (see Table VII).

Trombe walls can very effectively be combined with other passive solar heating systems. Direct gain south windows along with a Trombe wall are quite effective in supplying heat during the day when the Trombe wall is "charging up." In most cases, such a combination will negate the need for vents through the mass wall.

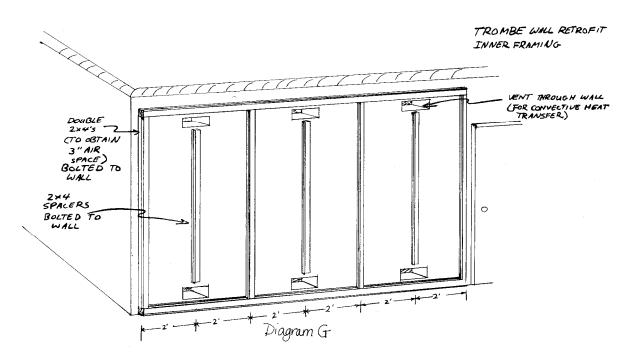
"Perforated" Trombe walls are being experimented with by Dr. Francis Wessling in Albuquerque, New Mexico.¹⁴ The resulting system is a sort of "hybrid" between direct gain and Trombe wall heating systems. Available information indicates that these Trombes, with perforations or holes throughout the mass wall, are quite successful thermally and quite esthetically pleasing.

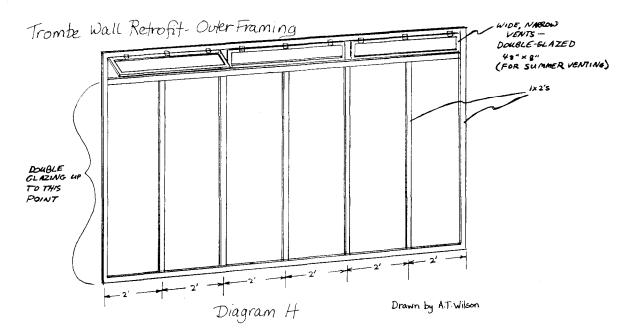
¹⁴ Wessling, F. C., "Solar Retrotit Test Module" 1978

Chapter 5

Retrofitting Existing Buildings with Trombe Walls

The potential of incorporating Trombe walls into new buildings has been demonstrated. There is very often also the possibility of adapting or retrofitting **existing** homes and buildings with Trombe walls.


If a building has mass walls (adobe, filled concrete block, brick, or stone) and one wall faces close to south, there is a good chance the wall could be turned into a Trombe wall. Other considerations have been discussed in the site selection section: sun path, obstructions, etc.

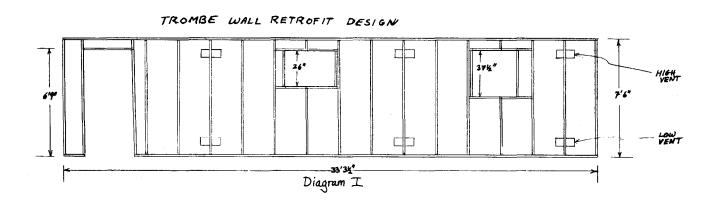

An insulated frame house would not work for a Trombe wall without serious alterations because no heat could be stored in the wall (although a no-storage air collector could be retrofitted). Though more expensive and probably less cost effective, it would be possible to build a Trombe wall onto a frame house by building a new south wall (removing the insulated frame wall). In doing so, of course, the proper materials for the wall would have to be used as outlined in this manual.

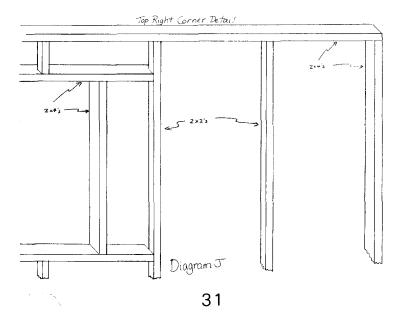
Assuming one has a wall of proper materials oriented correctly, turning it into a Trombe wall could be as easy as putting up a two-by-four frame on the south wall, attaching a layer of plastic glazing to it, adding 1 x 2 strips of wood and a second outer layer of glazing. As discussed, vents are not necessary for a Trombe wall although they can be very useful additions. Putting in vents would mean cutting holes through your mass wall which is not impossible, but may require quite a lot of work.

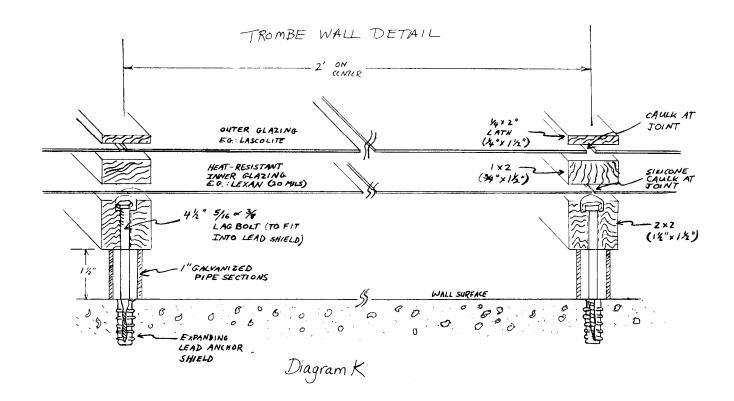
A very simple Trombe wall retrofit such as this could cost as little as \$1.50 per square foot of Trombe wall area. This investment would be returned in energy savings in less than six years according to current estimates by Larry Sherwood of the New Mexico Solar Energy Association.

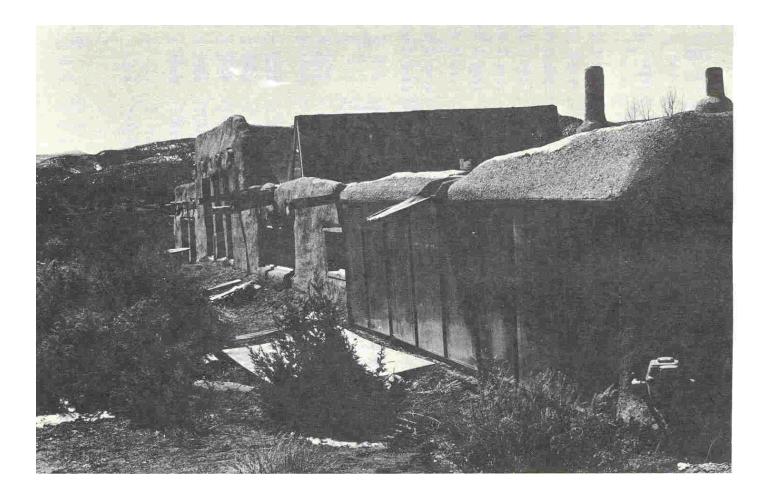
Diagrams G and H provide one example of how such a Trombe wall retrofit could be easily constructed. The mass wall to be covered should first be painted a dark color (with paint able to

withstand high temperatures). If a **vented** Trombe wall is to be built the vents should be cut through the wall. The actual framing with two-by-fours can be done on the ground (select a **flat** area). Measurements should be made carefully (especially when framing around windows and doors). In most cases, for plastic and fiberglass glazing, vertical framing members should be two or four feet on center (horizontal distance from the center of one to the center of the next), and 2-4 ft. edge to center for the uprights at each edge. This allows one to easily attach the glazing material (usually in four foot widths) without much waste. If a vented Trombe wall is being built care should be taken to ensure that air can freely circulate through the vents. One method of doing this if framing is 2 ft. on center (as in diagram G). is to notch out the two-by-fours over the upper and lower vents. In this way, the Trombe wall will be divided into four foot wide sections with one upper and lower vent serving each four foot section. The frame should be stained or painted to preserve the wood (again. with painting. select a paint able to withstand high temperatures).


Attaching the two-by-four frame to the house wall can present some problems. At the New Mexico Solar Energy Association, for a Trombe wall retrofit onto an adobe wall, we have used three different methods to secure the frame to the wall. First, anchor bolts were used to anchor the bottom of the frame to poured concrete foundation posts located every four feet along the Trombe wall. Second, threaded rod running all the way through the two-by-fours and wall was used every four feet to secure the top of the frame to the wall. And third, screws through the uprights anchored into expanding plastic shields. hold the frame tightly against the wall. Most of the strength was provided by the anchor bolts and the threaded rod through the wall: the screws and plastic shields were used merely to hold the frame snugly against the wall and hold fiberglass insulation in place between the two-by-fours and wall. If the mass wall is not adobe (e.g. brick, stone, filled block, etc.), expanding lead shields and lag bolts can generally be used to secure the structure to the building. Both fiberglass insulation and caulk should be used to prevent heat loss through the perimeter of the framing.


With the two-by-four frame tightly in place, a layer of glazing should be attached. Some people suggest attaching a **temporary** layer of cheap polyethylene for a few weeks to allow the paints and/or stains to **out-gas** upon heating up. The concern is that fumes coming off paints and stains could coat the glazing and reduce solar transmission. The permanent inner layer of glazing should then be nailed on (with three penny galvanized nails). See pages 6 and 8 for information on the correct glazing type. If summer cooling vents through the glazing at the top are to be used (as in the diagram), this glazing should only come up to where the vents start.


With the inner layer of glazing in place, the outer framing can be attached. One-by-twos are satisfactory for the outer framing, providing a 3/4 inch space between the double layers of glazing. The one-by-twos can be nailed or screwed directly onto the two-by-fours and inner glazing (caulk is worthwhile here to make a tight seal). The upper vents through the glazing (if used) can be built of the same one-by-twos, glazed on both sides and attached to the framing with hinges (see diagram H). Outer glazing should then be added (below the vents) on the outside surface of the one-by-twos. Again caulk should be used to ensure a tight seal. Finally, stained or painted ½ by one inch wood strips can be added over the glazing seams and edges to provide a better seal and improve the appearance of the Trombe wall.


With a vented Trombe wall, some sort of vent closures must be built to control air flow (see page 21). Having completed all this, the Trombe wall should operate quite well. Adaptations such as insulated reflectors and shading overhangs can improve the performance of the wall but are not strictly necessary.

Another example of a Trombe wall framing system is shown in Diagrams I through K. In this system 2 x 2's are used for inner framing with 2 x 4's used for the Trombe wall periphery and around windows and doors. Such a framing system is a good one for vented Trombes as it allows free circulation of hot air into the living area while conserving on wood and allowing fewer vents to be built for circulating hot air. It should be mentioned that the two examples presented are just that - examples. There is room for a great deal of innovation and experimentation with designs. It is hoped that these examples might serve as a starting point from which many new and better designs will emerge.

APPENDIX A - LOAD COLLECTOR RATIOS

PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS Load Collector Ratio ($BTU/DD-ft^2$) for particular values of Solar Heating Fraction (SHF)

	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Apalachicola,	, SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Page, Artzona	W.	196	88	54	37	27	19	13	7		Florida 1308 DD	WW WWN I	700 956	322 444	204 281	145 203	110 155	85 123	65 97		
6632 DD	WWN I TW	312 195	145	91 56	65 37	49 25	38 17 35	29 11	22 6 18	15 12	30° N	TW TWN I	635 906	313 240	194 266	133 189	95 142	70	51 82	36	
37°N Phoenix,	TWN I SHF	304 0.1	141 0.2	89 0.3	63 0.4	46 0.5	0.6	26 0.7	0.8	0.9	Gainesville, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
Arizona	WN	626	294	188	135	102	78	60	44	29	1239 DD	WW WWN I	731 1000	333 457	212 292	152 211	116 162	90 129	69 102		35 56
1765 DD	WWN I TW	863 577	407 287	261 179	189 123	145 88	114 64	90 47	69 33	49 21	30°N	TW TWN I	662 943	326 435	202 276	139 197	100	73	54 86	39	25
33°N	TWNI	819	38 6	247	176	132	101	76	56	38	Tallahassee, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Tucson. Arizona	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1485 DD	WW WWN I	621 857	285 397	179 249	128 180	97 138	75 109	57 87	42	28 48
1800 DD	WW WWNI TW	631 871 578	291 403 284	184 256 176	132 185 121	100 142 87	77 112 63	59 89 46	43 68 33	29 49 21	30°N	TW TWNI	563 809	279 376	172 237	117 169	84 127	61 97	45 73	32 54	21
32°N	TWNI	825	383	243	173	130	99	75	56	38	Tampa, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Little Rock, Arkansas	Shf	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	683 DD	WW WWN I	1147 1520	573 760	374 500	272 365	210 283	166 227	129 182	98 141	69 102
3219 DD	WW WWNI TW	239 365 232	108 172 112	66 107 67	46 76 44	33 57 30	24 44 21	17 35 14	11 26 9	18	28°N	TW TWN I	1059 1443	548 717	351 467	245 339	179 258	134 199	100	73	49 80
35°N	TWNI	356	165	103	73	54	40	30	22	14	Atlanta, Georgia	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Davis, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	2961 00	WWN I	301 448	136 207	83 129	58 91	43 69	31 54	23 42	15 32	8 22
2502 D0	WW WWNI TW	409 585 376	187 272 183	115 170 111	79 120 74	57 89 51	42 68 36	30 52 25	21 39 16	11 26 9	34°N	TW TWNI	286 431	138 198	83 123	55 87	38 64	27 48	18 36	12	7
39°N	TWNI	556	259	161	112	82	61	45	32	21	Boise. Idaho	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
El Centro, California	SHF	0.1	0.2	0.3 301	0.4	0.5	0.6	0.7 97	0.8 72	0.9 50	5809 DO	WW WWN I	185 299	83 139	48 86	31 59	20 43	12 31	6 23	16	10
1458 DO	WW WWN I TW	1028 1375 916	482 649 458	407 284	214 290 194	161 221 140	175	139 75	107 54	77 36	44°N	TW TWN I	182 290	86 135	50 83	31 56	20 40	12 29	6 21	14	8
33°N	TWNI	1294	608	382	270	202	154	117	87	60	Lemont (ANL) Illínois	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Fresno, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6 40	0.7 29	0.8 19	0.9 10	6155 00	WW WWN I	120 219	51 100	29 61	18 42	11 31	24	18	13	8
2492 DD	WW WWN I TW	405 577 370	186 271 181	113 168 109	77 117 72	55 87 49	40 66 34	50 24	37	25	42°N	TW TWN I	129 216	59 99	33 61	20 42	12 30	7 22	16	11	7
37°N	TWNI	550	257	159	110	79	59	43	31	20											
Inyokern, California	SHF	0.1	0.2	0.3	0.4 90	0.5	0.6 50	0.7 37	0.8 26	0.9	Indianapolis, Indiana	SHF WW	0.1 136	0.2 58	0.3 33	0.4 21	0.5 14	0.6	0.7	0.8	0.9
3528 00	WW WWNII TW	453 641 419	209 300 204	129 188 124	132 84	66 100 59	50 77 42	60 30	46 20	32	5699 DD	WWN I TW	239	109	67 37	46 23	34 14	26 8	19	14	9
36°N	TWNI	613	284	177	124	92	69	52	38	25	40°N	TWN I	235	107	66	45	33	24	17	12	7
Los Angeles. California	SHF	0.1	0.2	0.3	0.4	0.5	0.6 91	0.7 70	0.8 52	0.9 35	Ames, Iowa	SHF WW	0.1 117	0.2 50	0.3 29	0.4 18	0.5 11	0.6	0.7	0.8	0.9
2061 00	WW WWNI TW	763 1032 687	362 498 344	225 310 213	158 219 145	118 165 103	131 75	103	80 39	57 26	6588 DD	WWN I TW	215 127	99 58	61 33	42 20	31 12	23 6	18	12	.8
34"N	TWN I	979	464	291	205	153	116	88	65	45	42°N	TWNI	213	98	60	41	30	22	16	11	7
Riverside, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6 94	0.7 72	0.8 53	0.9 36	Dodge City, Kansas	SHF	0.1 214	0.2 99	0.3 61	0.4 43	0.5 31	0.6 23	0.7 16	0.8 10	0.9
1803 00	WW WHNI TW	767 1039 692	356 488 344	224 308 214	160 221 146	121 169 105	134 77	106 56	82 40	58 26	4986 00	WWN I TW	335 214	160 104	101 63	72 41	54 28	42 20	33 13	25 8	17
34"N	TWNI	984	459	290	207	155	118	90	67	46	38°N	TWNI	327	154	97	69	51	38	29	21	14
Santa Maria. California	SHF WW	0.1 544	0.2 272	0.3	0.4 126	0.5 96	0.6 74	0.7 56	0.8 41	0.9	Manhattan, Kansas	SHF	0.1 165	0.2 74	0.3 44	0.4 30	0.5 21	0.6 .34	0.7 8	0.8	0.9
2967 DD	WWN I TW	752 514	376 264	247 167	179	137 83	108 61	86 44	-66 31	45 20	5182 DD	WWN I TW	274 169	128 80	80 47	56 30	42 20	32 13	25 8	18	12
35°N	TWNI	720	358	231	166	126	96	73	54	36	39°N	TWNI	269	125	78	54	40	30	22	15	10
Granby. Colorado	SHF WV	0.1 196	0.2 90	0.3 56	0.4 39	0.5 28	0.6 20	0.7 14	0.8 8	0.9	Lexington, Kentucky	SHF WW	0.1 143	0.2 63	0.3 36	24	0.5 16	0.6 10	0.7	0.8	0.9
5524 DD	HWN I TW	313 197	146 96	94 58	67 38	51 26	40 18	31 12	23 7	15	4683 D0	WWNI TW	246 148	114 70	70 40	49 25	36 16	28 10	21 5	15	10
40"N	TWNI	303	143	91	65	48	36	27	19 0.8	13	38°N Lake Charles,	TWNI SHF	242 0.1	0.2	69 0.3	48 0.4	35 0.5	26 0.6	19 0.7	13 0.8	8 0.9
Grand Junction, Colorado	SHF WW	0.1 199	0.2 92	0.3 56	0.4 39	0.5 28	0.6 20	0.7 13	0.8	0.9	Louisiana	MM 244	522	239	152	109	82	63	48	35	23
5641 DD	WWNI TW	317 201	150 97	95 58	67 38	51 26	39 17	30 11	22	15	1459 00	www.t Tw	730 481	338 237	214 146	155 100	119 71	94 52	74 38	57 26	40 17
39°N Washington,	TWN I SHF	310 0.1	145 0.2	91 0.3	64 0.4	48 0.5	36 0.6	26 0.7	19 0.8	12 0.9	30°N Shreveport,	TWN I SHF	695 0.1	322			109 0.5	83 0.6	63 0.7	46 0.8	32 0.9
D. C.	W	179	79	47	32	22	15	9			Louisiana	w	361	166	104	74	65	42	31	22	14
4224 DD	WWN1 TW	292 180	135 85	83 50	58 32	44 21	33 13	25 8	18	12	2184 DD	WWNI TW	340	245 167	103	111 69	85 49 20	67 35	53 25	40	28 10 72
39"N	TWN I	285	131	81	57	41	31	22	16	10	32°N	TWN I	500	234	148	105	79	60	45	33	22

33

PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS (Cont.) Load Collector Ratio (BTU/DD-ft²) for particular values of Solar Heating Fraction (SHF)

Caribou,	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Albuquerque,	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Maine 9769 DD	WW WWN I	83 172	34 78	17 48	8 33	24	17	13	8		New Mexico 4348 DD	WW	278 414	133	83	59	44	33	24	16	9
47"N	TW TWN I	97 172	43 79	23 48	12 33	5 23	17	12	8	4	4348 DD 35°N	WWNI TW TWNI	271 402	201 135 193	128 83 123	92 56 87	70 39 65	55 28 49	43 19 37	33 13 27	23 7 18
Portland. Maine	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Los Alamos, New Mexico	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7511 DD	WW WWN I TW	125 223 133	54 103 62	31 64 35	20 45 22 44	13 33 14	7 25 8	19 17	14 12	8 7	6604 DD	WW WWNI TW	179 288 183	84 139 89	52 89 54	36 64 36	26 48 24	18 37 16	12 29 11	7 21 6	14
44°N Bošton,	TWN I SHF	221 0.1	102 0.2	63 0.3	0.4	32 0.5	23 0.6	0.7	0.8	, 0.9	36°N Ithaca,	TWN I SHF	283 0.1	136 0.2	86 0.3	61 0.4	45 0.5	34 0.6	25 0.7	18 0.8	12 0.9
Massachusetts 5634 DD	WW WWNI	137 241	60 110	35 68	23 48	15 36	9 27	21	15	9	New York 6914 DD	WW WWN I	93 189	36 83	18 50	9 34	24	18	13	9	5
42"N	TW TWN I	145 238	67 108	39 67	24 47	15 34	9 25	5	13	8	42°N	TW TWN I	106 188	46 83	24 50	13 34	6 24	17	12	8	4
East Lansing, Michigan	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	New York City, New York	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
6909 DD	WW WWNI TW	111 208 120	46 94 54	25 57 30	15 39 18	8 29 10	22 4	16	п	7	4871 DD	WW WWNI TW	147 250 152	64 117 71	38 72 42	25 51 26	17 38 17	11 29 11	5 22 6	16	10
43°N	TWN I	206	93	57	39	28	20	15	10	6	41°N	TWN I	247	114	71	49	36	27	20	14	9
Sault St. Mari Michigan	e, SHF	0.1 100	0.2 40	0.3 21	0.4	0.5	0.6	0.7	0.8	0.9	Sayville, L.I. New York	SHF WW	0.1 165	0.2 7 4	0.3 45	0.4 30	0.5 21	0.6 14	0.7 9	0.8	0.9
9048 DD	WWN I TW	193 110	87 49	53 26	36 15	26 7	19	13	9	5	4811 DD	WWNI TW	272	129 81	80 48	57 31	43 20	33 13	25 8	18 4	12
46°N St. Cloud.	TWN I SHF	192 0.1	87 0.2	53 0.3	36 0.4	25 0.5	18 0.6	13 0.7	8 0.8	4 0.9	41°N Schonactady	TWN I SHF	268	125	78	55	. 40	30 0 6	22	16	10
Minnesota	w	96	39	21	n						Schenectady, New York	WW	0.1 84	0.2 34	0.3 18	0.4 9	0.5	0.6	0.7	0.8	0.9
8879 DD 45°N	WWN I TW TWN I	189 108 189	85 48 86	52 26 52	36 15 36	26 7 25	19 18	14 13	9 8	5 5	6650 DD 43°N	WWNI TW TWNI	174 98 175	79 43 79	48 23 49	33 13 33	24 6 24	18 17	13 12	9 8	5 5
Columbia, Missouri	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Greensboro, North Carolina	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5046 DD	WW WWNI	175 287	77 133	4 6 82	31 57	21 43	14 33	8 25	18	12	3805 DD	WW WWN I	237 367	107 170	66 107	46 75	33 57	24 44	17 35	11 26	18
39°N	TW TWN I	177 2 81	83 129	4 9 80	31 55	20 4 1	13 30	8 22	15	10	36°N	TW TWN I	231 354	112 165	67 103	44 72	30 54	21 40	14 30	9	14
Glasgow, Montana	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Hatteras, North £gerolina	SHF WW	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
8996 DD	WW WWNI TW	168 277 171	75 130 80	44 81 47	29 56 30	19 41 19	12 31 12	23 7	17	10	2612 DD	WWN I TW	412 588 381	189 274 187	118 173 115	82 123 77	61 93 54	46 73 39	34 57 28	24 43 19	15 30 11
48°N	TWNI	272	126	78	54	39	29	21	14	9	35°N	TWNI	560	261	164	115	86	65	49	36	24
Great Falls, Montana	SHF WW	0.1 143	0.2 63	0.3 37	0.4 23	0.5	0.6 8	0.7	0.8	0.9	Raleigh, North Carolina	SHF WW	0.1 256	0.2 117	0.3 71	0.4 50	0.5 37	0.6 27	0.7 19	0.8 12	0.9 7
7750 DD	WMNI TW	246 149	115 69	71 40	49 25	36 15	27	20	14	8	3393 DD 36°N	WWNI TW TWNI	391 249	182 120 175	114	80 48	61 33	48 23	37 16	28 10	19 5
47°N Lincoln,	TWN I SHF	243 0.1	11 <u>2</u> 0.2	69 0.3	48 0.4	34 0.5	25 0.6	18 0.7	12 0.8	7 0.9	Bismarck,	SHF	378 0.1	0.2	109 0.3	77 0.4	57 0.5	43 0.6	32 0.7	23 0.8	15 0.9
Nebraska	WW WWN I	175	77 133	45 82	30 57	21 42	14 33	8 25	18	12	North Dakota 8851-DD	WW WWN I	111 208	46 94	25 57	14 39	6 28	21	15	10	6
5864 DD 41°N	TW TWN I	176 280	83 129	48 79	31 55	20 40	13 30	8	16	10	47°N	TW TWN I	120 207	54 94	30 57	17 39	9 27	20	14	9	5
Ely, Nevada	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Cleveland, Ohio	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7733 DD	WW WWNI	172 282	80 134	50 85	35 61	25 47	18 36	12 28 10	6 21 6	14	6351 DD	WW WWNI TW	103 202 114	41 89 50	22 53 27	12 36 15	26 8	20	14	10	6
39°N	TW TWNI	178 277	86 131	52 83	34 59	23 44	16 33	25	18	11	41°N	TWNI	200	89	53	36	26	19	13	9	5
Las Vegas, Nevada	SHF	0.1	0.2	0.3	0.4 92	0.5 68	0.6 52	0.7 39	0.8 28	0.9 17	Columbus, Oh∮o	SHF WW	0.1 120	0.2 51	0.3 29	0.4 18	0.5 11	0.6	0.7	0,8	0.9
2709 DD	WW WWNI TW	448 632 414	209 300 205	130 188 126	134 85	102 60	80 43	63 31	48 21	33 13	5211 DD	WWN I TW	218 128	100 59	61 33	42 20	31 12	23 6	17	12	7
36°N Bana	TWNI	603 0 1	284 0.2	179 0.3	126 0.4	94 0.5	71 0.6	53 0.7	39 0.8	26 0.9	40°N Put-1n-Bay,	TWN I SHF	216 0.1	99 0.2	61 0.3	42 0.4	30 0.5	22 0.6	16 0.7	11 0.8	6 0.9
Reno, Nevada	SHF WW	0.1 192	88	54	37	26	18	12	6		Ohio	W	102	39	20	9					
6332 DD 39°N	WWN1 TW TWNI	307 192 298	145 93 141	91 55 89	65 36 62	49 24 46	37 16 34	28 10 25	21 5 18	13 11	5796 DD 42°N	WWN I TW TWN I	199 112 199	88 48 87	52 26 52	35 14 35	25 6 25	18 18	13 12	8 8	4
Seabrook,	SHF	0.1	0.2	0.3	0.4	0,5	0.6	0.7	0.8	0.9	Oklahoma City. Oklahoma	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
New Jersey 4812 DD	WW WWN I	163 271	72 126	43 78	29 55	20 41	13 31	8 24	17	11	3725 DD	WW WWNI	250 382	115 179	70 112	49 80	36 60	26 47	19 37	12 28	6 19
4812 00 39°N	TW TWNI	167 267	78	46 76	29 53	19 39	12 29	21	15	9	35°N	TW TWNI	243 370	118 172	71 108	47 76	32 57	23 43	15 32	10 23	5

PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS (Cont.) Load Collector Ratio (BTU/DD-ft²) for particular values of Solar Heating Fraction (SHF)

Astoria,	SHF	0.1	0.2	0,3	0.4	0.5	0.6	0.7	0.8	0.9	Flaming Gorge,	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Oregon	WW LINUX	207	98	59	39	26	17 37	9	10		Utah	W	170	79	48	33	23	16	10	5	
5186 DD 46°N	WWNI TW TWNI	322 205 315	158 99 152	99 59 95	69 38 65	50 25 47	16 34	27 9 24	19 16	۱۱ 9	6929 DD 41°N	WWNI TW TWNI	277 173 272	132 84 129	84 50 82	60 33 58	45 22 43	35 15	27 9	20	13
Corvallis, Oregon	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Salt Lake City, Utah	SHF	0.1	0,2	0,3	0.4	43 0.5	32 0,6	24 0.7	17 0.8	11 0.9
4726 DD	WW WWN I	224 352	96 158	57 97	37 67	24 48	16 36	9 26	18	11	6052 DD	WW WWNI	192 308	86 143	52 90	35 63	24 46	16 35	10 27	19	12
45*N	TW TWN I	217 341	100 153	58 93	36 63	24 45	15 33	9 23	16	9	41°N	TW TWNI	190 299	91 140	54 87	34 60	23 44	15 32	9 24	4	10
Medford. Oregon	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Burlington, Vermont	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5008 DD	WW WWNI	188 306	83 139	49 86	31 60	20 43	12 32	23	16	9	8269 DD	WW WWNI	80 171	30 75	15 46	31	23	17	12	8	4
42°N	TW TWNI	186 295	87 136	50 83	31 57	20 40	12 29	6 21	14	8	44°N	TW TWN I	94 172	41 77	21 46	11 31	22	16	11	,	4
State College, Pennsylvania	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Pullman, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5934 DO	WW WWNI TW	117 214 126	50 98 58	28 61 33	18 42 20	11 31 12	23 6	17	12	7	5542 DD	WW WWNI TH	178 291	78 134	44 82	27 56	17 40	9 29	21	14	8
41°N	TWNI	213	97	60	41	30	22	16	11	6	47°N	TW Twn I	175 282	81 130	46 79	28 53	18 37	10 27	19	13	7
Newport, Rhode Island	SHF WW	0.1 150	0.2 66	0.3 40	0.4 27	0.5 19	0.6 12	0.7 7	0.8	0.9	Richland, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5804 00	WWNE TW	256 156	118	74 43	52 27	39 18	30 11	23	17	11	5941 DD	WW WWN I TW	179 293 176	77 133 80	43 81 45	25 54 27	15 38 16	7 27 9	19	13	7
41°N	TWNI	251	116	72	51	37	28	20	14	9	47°N	TWNI	285	130	45 78	52	36	26	18	12	7
Charleston, South Carolina		0.1	0.2	0.3	0.4	0.5	0.6 52	0.7	0.8 28	0.9 18	Seattle, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2033 00	WW WWNI TW	442 624 407	204 295 202	127 184 124	90 132 84	67 100 59	52 79 43	39 63 31	48 21	34 13	4424 00	WW WWNI TW	219 346 211	93 154	52 93	32 62	20 44	11 31	22	15	• 9
33°N	TWNI	594	279	176	124	93	71	53	39	27	48°N	TWNI	333	95 149	54 89	33 59	20 41	12 29	6 20	13	8
Rapid City. South Dakota	SHF WW	0.1 149	0.2 67	0.3 40	0.4 26	0.5 18	0.6 11	0.7	0.8	0.9	Spokane. Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7345 DD	WWNI TW	253 155	118 73	74 43	52 27	39 17	30 11	22 6	16	10	6655 DD	WW WWNI TW	149 255 151	63 116 68	34 70 38	20 47 22	10 33 13	23 6	17	11	6
44°N	TWNI	249	116	72	50	37	27	20	14	9	48°N	TWNI	251	114	68	45	32	22	16	10	5
Nashville, Tennessee	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Madison, Wisconsin	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	WW WWN I	227 355	99 161	59 98	40 68	28 51	20 39	13 30	0.8 8 23	0.9		WW WWN I	108 206	44 92	24 56	14 38	7 28	0.6 21	0.7 16	0.8 11	0.9 6
Tennessee	w	227	99	59	40	28	20	13	8		Wisconsin	WW	108	44	24	14	7				6 6
Tennessee 3578 DD	WW WWN I TW TWN I SHF	227 355 219 343 0.1	99 161 103 155 0.2	59 98 61 95 0.3	40 68 39 66 0.4	28 51 26 48 0.5	20 39 18 36 0.6	13 30 11 27 0.7	8 23 19 0.8	, 15	Wisconsin 7863 DD	WW WWNI TW. TWNI SHF	108 206 119 204 0.1	44 92 53 92 0.2	24 56 29	14 38 17	7 28 10	21	16	п	6
Tennessee 3578 DD 36°N Oak Ridge,	WW WWNI TW TWNI SHF WW WWNI	227 355 219 343 0.1 204 325	99 161 103 155 0.2 90 149	59 98 61 95 0.3 54 92	40 68 39 66 0.4 36 64	28 51 26 48 0.5 26 48	20 39 18 36 0.6 18 37	13 30 11 27 0.7 12 29	8 23 7 19	15 12	Wisconsin 7863 DD 43°N Lander,	WW WWNI TW. TWNI	108 206 119 204	44 92 53 92	24 56 29 56 0.3	14 38 17 38 0.4	7 28 10 27 0.5 22 44 21	21 20 0.6 15 34 14	16 14 0.7 9 26 9	11 10 0.8 19 4	6 6 0.9 12
Tennessee 3578 DD 36°N Oak Ridge, Tennessee	WW WWNI TW TWNI SHF WW	227 355 219 343 0.1 204	99 161 103 155 0.2 90	59 98 61 95 0.3 54	40 68 39 66 0.4 36	28 51 26 48 0.5 26	20 39 18 36 0.6 18	13 30 11 27 0.7 12	8 23 19 0.8 6	15 12 0.9 14 11	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N	WW WWN I TW TWN I SHF WW WWN I TW TWN I	108 206 119 204 0.1 163 267 168 264	44 92 53 92 0.2 76 129 81 126	24 56 29 56 0.3 47 82 49 80	14 38 17 38 0.4 32 58 32 56	7 28 10 27 0.5 22 44 21 41	21 20 0.6 15 34 14 31	16 14 0.7 9 26 9 23	11 10 0.8 19 4 16	6 6 0.9 12 10
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD	WW WWN I TW TWN I SHF WW WWN I TW TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1	99 161 103 155 0.2 90 149 95 145 0.2	59 98 61 95 0.3 54 92 56 89 0.3	40 68 39 66 0.4 36 64 36 62 0.4	28 51 26 48 0.5 26 48 24 46 0.5	20 39 18 36 0.6 18 37 16 34 0.6	13 30 11 27 0.7 12 29 6 25 0.7	8 23 7 19 0.8 6 21 18 0.8	15 12 0.9 14 11 0.9	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD	WW WWN I TWN I SHF WW WWN I TWN I TWN I SHF	108 206 119 204 0.1 163 267 168 264 0.1	44 92 53 92 0.2 76 129 81 126 0.2	24 56 29 56 0.3 47 82 49 80 0.3	14 38 17 38 0.4 32 58 32 56 0.4	7 28 10 27 0.5 22 44 21 41 0.5	21 20 0.6 15 34 14 31 0.6	16 14 0.7 9 26 9 23 0.7	11 10 0.8 19 4	6 6 0.9 12
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville,	WW WWN I TW SHF WW WWN I SHF WW WWN I	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399	99 161 103 155 0.2 90 149 95 145 0.2 526 700	59 98 61 95 0.3 54 92 56 89 0.3 348 465	40 68 39 66 0.4 36 64 36 62 0.4 254 342	28 51 26 48 0.5 26 48 24 46 0.5 194 265	20 39 18 36 0.6 18 37 16 34 0.6 151 209	13 30 11 27 0.7 12 29 6 25 0.7 117 165	8 23 7 19 0.8 6 21 18 0.8 88 127	15 12 0.9 14 11 0.9 60 90	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie,	WW WWNI TWNI SHF WW WWNI TWNI SHF WW	108 206 119 204 0.1 163 267 168 264 0.1 157 263	44 92 53 92 0.2 76 129 81 126	24 56 29 56 0.3 47 82 49 80	14 38 17 38 0.4 32 58 32 56	7 28 10 27 0.5 22 44 21 41	21 20 0.6 15 34 14 31	16 14 0.7 9 26 9 23	11 10 0.8 19 4 16	6 6 0.9 12 10 0.9 13
Tennessee 3578 DD 36*N Oak Ridge, Tennessee 3817 DD 36*N Brownsville, Texas	WW WWN I TW TWN I SHF WW WWN I TW SHF WW	227 355 219 343 0.1 204 325 201 315 0.1 1052	99 161 103 155 0.2 90 149 95 145 0.2 526	59 98 61 95 0.3 54 92 56 89 0.3 348	40 68 39 66 0.4 36 64 36 62 0.4 254	28 51 26 48 0.5 26 48 24 46 0.5 194	20 39 18 36 0.6 18 37 16 34 0.6 151	13 30 11 27 0.7 12 29 6 25 0.7 117	8 23 7 19 0.8 6 21 18 0.8 88	15 12 0.9 14 11 0.9 60	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming	WW WWN I TWN I SHF WW WWN I TWN I SHF WW	108 206 119 204 0.1 163 267 168 264 0.1	44 92 53 92 0.2 76 129 81 126 0.2 72 124	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77	14 38 17 38 0.4 32 58 32 56 0.4 31 56 31 55	7 28 10 27 0.5 22 44 21 41 0.5 22 43 21 41	21 20 0.6 15 34 14 31 0.6 15 33 14 30	16 14 0.7 9 26 9 23 0.7 10 26 9 23	11 10 0.8 19 4 16 0.8 19 4 16	6 6 0.9 12 10 0.9 13 10
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville, Texas 600 DD	WW WWN I TWN I TWN I SHF WW TWN I SHF SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1	99 161 103 155 0.2 90 149 95 145 0.2 526 700 506 664 0.2	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3	40 68 39 66 0.4 36 64 36 62 0.4 254 342 226 315 0.4	28 51 26 48 0.5 26 48 24 46 0.5 194 265 165 238 0.5	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7	8 21 19 0.8 6 21 18 0.8 88 127 66 104 0.8	12 0.9 14 11 0.9 60 90 44 71 0.9	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DD	WW WWNI TW I SHF WW WHNI TW I SHF WW WWNI TW NI SHF	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47	14 38 17 38 0.4 32 58 32 56 0.4 31 56 31	7 28 10 27 0.5 22 44 21 41 0.5 22 43 21	21 20 0.6 15 34 14 31 0.6 15 33 14	16 14 0.7 9 26 9 23 0.7 10 26 9	11 10 0.8 19 4 16 0.8 19 4	6 6 0.9 12 10 0.9 13
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DO 36°N Brownsville, Texas 600 DD 26°N El Paso, Texas	WW WWN I TWN I SHF WW WWN I TWN I SHF WW SHF WM SHF WW	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608	99 161 103 155 0.2 90 149 95 145 0.2 526 700 506 664 0.2 205 295	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3 129 187	40 68 39 66 0.4 36 64 36 62 0.4 254 342 226 315 0.4 92 134	28 51 26 48 0.5 26 48 24 46 0.5 194 265 165 238 0.5 69 103	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63	8 27 19 0.8 6 21 18 0.8 88 127 66 104 0.8 28 48	 12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DO 41°N Edmonton,	WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF SHF	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 84	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 83	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 0.3	14 38 17 38 0.4 32 58 32 56 0.4 31 56 31 55	7 28 10 27 0.5 22 44 21 41 0.5 22 43 21 41	21 20 0.6 15 34 14 31 0.6 15 33 14 30	16 14 0.7 9 26 9 23 0.7 10 26 9 23	11 10 0.8 19 4 16 0.8 19 4 16	6 6 0.9 12 10 0.9 13 10
Tennessee 3578 DD 36"N Oak Ridge, Tennessee 3817 DD 36"N Brownsville, Texas 600 DD 26"N El Paso, Texas	WW WWN I TWN I SHF WW WINI TWN I TWN I SHF WW SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431	99 161 103 155 0.2 90 149 95 145 0.2 526 700 506 664 0.2 205	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3 129	40 68 39 66 0.4 36 62 0.4 254 342 226 315 0.4 92	28 51 26 48 0.5 26 48 24 46 0.5 194 265 238 0.5 59	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39	8 23 19 0.8 6 21 18 0.8 88 127 66 104 0.8 28	 15 12 0.9 14 11 0.9 60 90 44 71 0.9 18 	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DD 41°N Edmonton, Alberta	WW WWNI TW.SHF WW WWNI TW SHF WW SHF WW SHF WW SHF WW SHF WW WNI TWNI WW NI TWNI	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 83 42 83	24 56 29 56 0.3 47 82 49 80 0.3 44 79 80 0.3 44 77 77 0.3 48 20 48	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 31	7 28 10 27 0.5 22 44 21 41 0.5 22 43 21 41 0.5 20 20	21 20 0.6 15 34 14 31 0.6 15 33 14 30 0.6 13 14	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 23 0.7 8 9	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5	6 6 0.9 12 10 0.9 13 10 0.9
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville, Texas 600 DD 26°N El Paso, Texas 2700 DD	WW WWN I TWN I SHF WW WWN I TWN I SHF WW SHF WWN I TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.3	99 161 103 155 0.2 90 149 95 145 0.2 2526 664 0.2 205 205 205 202 279 0.2	59 98 61 95 0.3 54 92 56 89 0.3 348 89 0.3 348 50 324 435 0.3 129 187 125 178 0.3	40 68 39 66 0.4 36 64 64 62 0.4 226 315 0.4 92 134 85 126 0.4	28 51 26 48 0.5 26 48 24 46 0.5 194 265 238 0.5 69 103 60 94 0.5	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 0.6 52 80 0.6	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 140 0.7	8 2 3 19 0.8 6 21 18 0.8 88 80.8 104 0.8 22 40 0.8 28 48 22 40 0.8	12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD	WW WWNI TW SHF WW WWNI TWNI SHF WW WWNI TWNI SHF	108 206 119 204 0.1 163 267 168 264 259 0.1 157 263 164 259 0.1 93 184 102 184 0.1	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 83 42 83 0.2	24 56 29 56 0.3 47 82 49 80 0.3 44 47 77 77 0.3 48 80 0.3	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31	7 28 10 27 0.5 22 44 21 41 0.5 22 43 21 41 0.5 20	21 20 0.6 15 34 14 31 0.6 15 33 14 30 0.6 13	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8	11 10 0.8 19 4 16 0.8 19 4 16 0.8	6 6 0.9 12 10 0.9 13 10
Tennessee 3578 DD 36"N Oak Ridge, Tennessee 3817 DD 36"N Brownsville, Texas 600 DD 26"N El Paso, Texas 2700 DD 32"N Fort Worth,	WW WWN I TWN I SHF WW WWN I TWN I TWN I SHF WW WWN I TWN I SHF WW SHF WW SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 526	99 161 103 155 0.2 90 149 95 145 0.2 2526 664 0.2 205 202 202 202 202 202 202 20	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3 129 187 125 0.3 129 187 178 0.3	40 68 39 66 64 36 62 0.4 254 315 0.4 226 315 0.4 92 134 82 6 0.4 92 135 126 0.4	28 51 26 48 0.5 26 48 24 46 0.5 194 265 238 0.5 165 238 0.5 69 103 60 94 0.5 57 87	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 0.6 52 80 0.6 44 72 0.6 43 69	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 31 40 0.7 32 54	8 23 7 19 0.8 6 21 18 0.8 88 127 66 60 104 0.8 28 48 240 0.8 28 40 0.8 23 41	15 12 0.9 14 11 0.9 60 90 44 71 0.9 13 34 13 27 0.9 14 29	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD 54°N Ottawa,	WW WWNI TW.SHF WW WWNI TW SHF WW SHF WW SHF WW SHF WW SHF WW WNI TWNI WW NI TWNI	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 83 42 83	24 56 29 56 0.3 47 82 49 80 0.3 44 79 80 0.3 44 77 77 0.3 48 20 48	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 31 0.4 7 33 13	7 28 10 27 0.5 22 44 41 0.5 22 43 21 41 0.5 20 20 0.5 20 20 0.5	21 20 0.6 15 34 14 31 0.6 15 33 30 0.6 13 14 0.6 13 14 0.6 17	16 14 0.7 9 23 0.7 10 26 9 23 0.7 8 9 0.7 8 9 0.7	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8	6 6 0.9 12 10 0.9 13 10 0.9 0.9
Tennessee 3578 DD 36"N Oak Ridge, Tennessee 3817 DD 36"N Brownsville, Texas 600 DD 26"N El Paso, Texas 2700 DD 32"N Fort Worth, Texas	WW WWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364	99 161 103 155 0.2 90 149 95 145 0.2 526 664 0.2 205 202 279 0.2 171	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3 125 178 0.3 108	40 68 39 66 0.4 36 64 36 62 0.4 226 315 312 6 0.4 92 226 315 126 0.4 76 6 0.4 71 108	28 51 26 48 26 48 24 46 0.5 165 238 0.5 69 94 0.5 50 81	20 39 18 36 0.6 18 37 16 34 0.6 151 209 183 0.6 52 80 44 72 0.6 43 69 36 61	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 140 0.7 39 63 31 54 0.7	8 23 7 9 0.8 6 21 18 0.8 88 88 127 66 0.8 28 22 40 0.8 23 41 18 34	12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DD 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DD 45°N	WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWI TWNI SHF WWWI TWNI TWNI TWNI TWNI TWNI	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184 0.1 91 185 103 184	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 83 42 83 0.2 35 81 45 82	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 77 0.3 48 20 48 0.3 17 49 9 23 49	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 33	7 28 10 27 0.5 22 44 1 0.5 22 43 1 0.5 20 20 0.5 24 24 24 24 24 24 24 24 24 24 24 24 24	21 20 0.6 15 34 14 31 0.6 15 33 14 30 0.6 13 14 0.6 17 17	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 23 0.7 8 9 0.7 12 12	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8 8 8	6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville, Texas 600 DD 26°N El Paso, Texas 2700 DD 32°N Fort Worth, Texas 2405 DD	WW WWN I TWN I TWN I SHF WW TWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 582 0.1	99 161 103 155 0.2 90 149 95 145 0.2 2526 664 0.2 295 205 205 205 205 205 205 205 20	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 324 129 161 122 178 1275 178 1255 178 159 1066 152 0.3 352 0.3 365 152 0.3 365	40 68 39 66 0.4 36 64 36 62 2226 315 2226 315 126 0.4 85 126 0.4 76 115 71 108 0.4	28 51 26 48 0.5 26 48 24 46 0.5 165 238 0.5 165 238 0.5 57 87 50 81 0.5	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 140 0.7 32 64 63 0.7	8 23 7 9 0.8 6 21 18 0.8 88 127 66 0.8 88 127 66 0.8 23 40 0.8 23 41 18 34 0.8	15 12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DO	WW WWNI TW SHF WWWNI TWNI SHF WWWI TWNI SHF WWWI TWNI SHF WWWI TWNI SHF	108 206 119 204 0.1 163 267 168 264 259 0.1 157 263 164 259 0.1 93 184 102 184 0.1 185 103 184 0.1	44 92 53 92 0.2 76 129 81 126 0.2 72 72 72 72 72 72 72 72 72 72 72 72 72	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 77 0.3 48 20 48 20 48 20 48 20 48 9 0.3	14 38 17 38 0.4 32 58 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4	7 28 10 0.5 22 44 41 1 0.5 22 43 21 41 0.5 20 20 0.5 20 20 0.5 24 24 24 0.5	21 20 0.6 15 34 14 31 0.6 15 33 30 0.6 13 14 0.6 13 14 0.6 17	16 14 0.7 9 23 0.7 10 26 9 23 0.7 8 9 0.7 8 9 0.7	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8	6 6 0.9 12 10 0.9 13 10 0.9 0.9
Tennessee 3578 DD 36"N Oak Ridge, Tennessee 3817 DD 36"N Brownsville, Texas 600 DD 26"N El Paso, Texas 2700 DD 32"N Fort Worth, Texas 2405 DD 33"N Hidland,	WW WWNI TWNI SHF WWNI TWNI SHF WW WNNI TWNI SHF WW WNNI TWNI SHF WW SHF WW SHF WW SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 526 344 503 0.1 364	99 161 103 155 0.2 90 149 95 145 0.2 2526 664 0.2 205 205 205 202 279 0.2 171 171 231 0.2 145 0.2 145 145 145 145 145 145 145 145	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 0.3 129 187 125 178 0.3 108 159 106 152 0.3 115 169	40 68 39 66 0.4 36 64 36 62 226 315 0.4 254 312 226 315 126 0.4 92 134 85 126 0.4 85 115 71 108 0.4 82 2121	28 51 26 48 24 48 24 46 0.5 105 238 0.5 57 87 50 81 0.5 57 87 50 81 0.5	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 44 47 72 0.6 61 0.6 61 0.6 61 0.6 61 0.6 61 63 0.6 63 63 63 66 61 0.7 73 0.6 61 0 0.6 61 0 0 0 0 0 0 0	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 140 0.7 32 54 26 60.7 35 57	8 23 7 9 0.8 6 21 18 0.8 88 127 66 104 0.8 88 127 66 104 0.8 28 48 22 40 0.8 23 41 18 34 1 8 34 10 8 25 44	15 12 0.9 14 11 0.9 60 90 44 71 0.9 13 34 13 27 0.9 14 29 10 23 0.9 16 31	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DO 45°N Toronto, Ontorio 6827 DO	WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWI TWNI SHF WWWI TWNI TWNI TWNI TWNI TWNI	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184 0.1 93 184 0.1 195 103 184 0.1	44 92 53 92 0.2 76 129 81 126 0.2 72 124 79 122 0.2 34 42 83 0.2 35 81 45 42 82 0.2 2 95	24 26 29 56 0.3 47 82 49 80 0.3 44 79 47 77 0.3 48 20 48 0.3 17 49 90 0.3 48 20 48 0.3 23 55 28	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 13 13 13 13 13 13 13 13 13 13	7 28 10 27 0.5 22 44 41 0.5 22 43 21 41 0.5 20 20 0.5 24 44 21 41 0.5 20 20 20 20 20 20 20 20 20 20	21 20 0.6 15 34 14 31 0.6 13 14 0.6 13 14 0.6 17 17 0.6 21	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 12 12	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8 8 8 0.8 10	6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville, Texas 600 DD 26°N El Paso, Texas 2700 DD 32°N Fort Worth, Texas 2405 DD 33°N Midland, Texas	WW WWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF WW WWN I TWN I SHF WW	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 5264 5264 5264 503 0.1 385	99 161 103 155 0.2 90 90 95 149 95 149 95 149 95 149 95 206 664 0.2 205 202 202 202 202 202 202 20	59 98 61 95 0.3 348 54 92 56 89 0.3 348 324 435 0.3 129 125 178 0.33 108 159 152 106 152 0.3 105 106 152 0.3 115	40 68 39 66 0.4 36 64 36 62 226 315 0.4 226 315 0.4 92 134 226 315 126 0.4 76 115 71 108 0.4 82	28 51 26 48 0.5 26 48 24 46 0.5 165 238 0.5 60 94 0.5 57 87 50 81 0.5 61	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6 47 39 55 55 55 55 55 55 55 55 55 5	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 6 31 31 54 46 0.7 35 57 78 49	8 23 7 9 0.8 6 21 18 0.8 88 127 66 0.8 23 40 0.8 23 41 18 34 0.8 24 10 34 0.8 24 34 19 36	12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9 14 29 10 23 10 23 10 23	Wisconsin 7863 DD 43°N Lander, Wyoming 7870 DD 43°N Laramie, Wyoming 7381 DD 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DD 45°N Toronto, Ontorio 6827 DD 44°N	WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI	108 206 119 204 0.1 163 267 168 264 259 0.1 157 263 164 259 0.1 93 184 0.1 91 185 103 184 0.1 103 184 0.1	44 92 53 92 0.2 76 129 81 126 72 124 79 122 0.2 34 42 83 42 83 0.2 35 81 45 82 0.2 42 89 951 89	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 77 70.3 48 20 48 0.3 17 49 90.3 23 49 90.3 23 55 55	14 38 17 38 0.4 32 58 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 37	7 28 10 0.5 22 44 21 41 0.5 22 43 21 41 0.5 20 20 0.5 20 20 0.5 24 24 24 0.5 5 6 6 27 7 9 27	21 20 0.6 15 34 14 31 0.6 13 33 14 30 0.6 13 14 0.6 17 17 0.6 21 19	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 15 14	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 8 8 8 0.8 10 9	6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6 5
Tennessee 3578 DD 36"N Oak Ridge, Tennessee 3817 DD 36"N Brownsville, Texas 600 DD 26"N El Paso, Texas 2700 DD 32"N Fort Worth, Texas 2405 DD 33"N Hidland, Texas 2591 DD	WW WWN I TWN I TWN I SHF WW TWN I TWN I SHF WW WMN I TWN I SHF WWN I TWN I SHF WW MI TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 582 0.1 364 503 0.1 385 544 503 0.1	99 161 103 155 0.2 90 149 95 145 0.2 2526 664 0.2 295 205 205 205 205 205 205 205 20	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 324 129 163 129 103 129 106 152 0.3 115 159 106 152 0.3 115 159 106 152 0.3 115 159 106 152 0.3 115 169 113 161 0.3 161 165 165 165 165 165 165 165 165 165 165 165 165 165 <t< td=""><td>40 68 39 66 0.4 36 64 36 62 224 312 226 315 124 85 125 0.4 76 115 71 108 0.4 82 211 76 115 0.4</td><td>28 51 26 48 0.5 26 48 24 46 0.5 165 238 0.5 57 50 81 0.5 57 87 50 81 0.5 61 93 54 86 0.5</td><td>20 39 18 36 0.6 18 37 16 34 0.6 1209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6 61 0.6 62 80 44 73 36 69 36 61 0.6 61 65 65 80 47 75 16 80 66 67 75 75 75 75 75 75 75 75 75 7</td><td>13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 4 0.7 32 54 26 60.7 32 54 26 0.7 28 91 10 25 25 25 25 25 25 25 25 25 25</td><td>8 23 7 9 0.8 6 21 18 0.8 88 127 66 104 0.8 88 22 40 0.8 23 41 18 34 118 34 10.8 23 41 18 34 0.8 23 41 10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.</td><td>15 12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9 16 31 12 24 0.9</td><td>Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DO 45°N Toronto, Ontorio 6827 DO</td><td>WW WWNI TW SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF</td><td>108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184 102 184 0.1 185 103 184 0.1 195 103 184 0.1</td><td>44 92 53 92 0.2 76 129 81 126 72 72 72 72 72 72 72 72 72 72 72 72 72</td><td>24 26 29 56 0.3 47 82 49 80 0.3 44 79 47 77 0.3 48 20 48 0.3 17 49 90 0.3 48 20 48 0.3 23 55 28</td><td>14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 13 13 13 13 13 13 13 13 13 13</td><td>7 28 10 27 0.5 22 44 41 0.5 22 43 21 41 0.5 20 20 0.5 24 44 21 41 0.5 20 20 20 20 20 20 20 20 20 20</td><td>21 20 0.6 15 34 14 31 0.6 13 14 0.6 13 14 0.6 17 17 0.6 21</td><td>16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 12 12</td><td>11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8 8 8 0.8 10</td><td>6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6</td></t<>	40 68 39 66 0.4 36 64 36 62 224 312 226 315 124 85 125 0.4 76 115 71 108 0.4 82 211 76 115 0.4	28 51 26 48 0.5 26 48 24 46 0.5 165 238 0.5 57 50 81 0.5 57 87 50 81 0.5 61 93 54 86 0.5	20 39 18 36 0.6 18 37 16 34 0.6 1209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6 61 0.6 62 80 44 73 36 69 36 61 0.6 61 65 65 80 47 75 16 80 66 67 75 75 75 75 75 75 75 75 75 7	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 63 31 4 0.7 32 54 26 60.7 32 54 26 0.7 28 91 10 25 25 25 25 25 25 25 25 25 25	8 23 7 9 0.8 6 21 18 0.8 88 127 66 104 0.8 88 22 40 0.8 23 41 18 34 118 34 10.8 23 41 18 34 0.8 23 41 10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	15 12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9 16 31 12 24 0.9	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DD 54°N Ottawa, Ontario 8735 DO 45°N Toronto, Ontorio 6827 DO	WW WWNI TW SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF	108 206 119 204 0.1 163 267 168 264 0.1 157 263 164 259 0.1 93 184 102 184 0.1 185 103 184 0.1 195 103 184 0.1	44 92 53 92 0.2 76 129 81 126 72 72 72 72 72 72 72 72 72 72 72 72 72	24 26 29 56 0.3 47 82 49 80 0.3 44 79 47 77 0.3 48 20 48 0.3 17 49 90 0.3 48 20 48 0.3 23 55 28	14 38 17 38 0.4 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 13 13 13 13 13 13 13 13 13 13	7 28 10 27 0.5 22 44 41 0.5 22 43 21 41 0.5 20 20 0.5 24 44 21 41 0.5 20 20 20 20 20 20 20 20 20 20	21 20 0.6 15 34 14 31 0.6 13 14 0.6 13 14 0.6 17 17 0.6 21	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 12 12	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 4 5 0.8 8 8 0.8 10	6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6
Tennessee 3578 DD 36°N Oak Ridge, Tennessee 3817 DD 36°N Brownsville, Texas 600 DD 26°N El Paso, Texas 2700 DD 32°N Fort Worth, Texas 2405 DD 33°N Midland, Texas 2591 DD 32°N	WW WWN I TWN I TWN I SHF WW I TWN I SHF WW I TWN I SHF WW I TWN I SHF WW I TWN I SHF WW I TWN I SHF	227 355 219 343 0.1 204 325 201 315 0.1 1052 1399 976 1330 0.1 431 608 402 582 0.1 364 562 344 503 0.1 385 548 362 527	99 161 103 155 0.2 90 149 95 145 0.2 205 202 279 0.2 271 171 239 0.2 171 239 0.2 171 171 239 0.2 184 255 184 255 184 255 184 255 185 255 202 275 171 239 0.2 275 171 239 0.2 235 255 202 275 171 257 0.2 275 171 257 0.2 275 171 257 0.2 275 171 257 0.2 275 171 257 0.2 275 202 275 171 257 0.2 275 202 275 275 0.2 275 275 171 257 0.2 275 275 0.2 275 275 0.2 275 275 0.2 275 275 171 257 171 257 171 257 171 257 0.2 255 257 257 257 257 257 257 25	59 98 61 95 0.3 54 92 56 89 0.3 348 465 324 435 324 40.3 129 66 152 178 1725 178 159 106 152 0.3 115 169 113 113 113 113 113 113 113 113 113 113 161 113 113 161 110 <td< td=""><td>40 68 39 66 0.4 36 64 36 62 226 315 126 0.4 76 134 85 126 0.4 76 121 15 76 115</td><td>28 51 26 48 24 48 24 46 0.5 165 238 0.5 165 238 0.5 57 70 81 0.5 50 81 0.5 61 93 354 86</td><td>20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6 47 39 55 55 55 55 55 55 55 55 55 5</td><td>13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 6 31 31 54 46 0.7 35 57 78 49</td><td>8 23 7 9 0.8 6 21 18 0.8 88 127 66 0.8 23 40 0.8 23 41 18 34 0.8 24 10 34 0.8 24 34 19 36</td><td>12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9 14 29 10 23 10 23 10 23</td><td>Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DO 54°N Ottawa, Ontario 8735 DO 45°N Toronto, Ontorio 6827 DO 44°N Winnipeg,</td><td>WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI</td><td>108 206 119 204 0.1 163 267 168 264 259 0.1 157 263 164 259 0.1 93 184 0.1 91 185 103 184 0.1 103 184 0.1</td><td>44 92 53 92 0.2 76 129 81 126 72 124 79 122 0.2 34 42 83 42 83 0.2 35 81 45 82 0.2 42 89 951 89</td><td>24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 77 70.3 48 20 48 0.3 17 49 90.3 23 49 90.3 23 55 55</td><td>14 38 17 38 0.4 32 58 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 37</td><td>7 28 10 0.5 22 44 21 41 0.5 22 43 21 41 0.5 20 20 0.5 20 20 0.5 24 24 24 0.5 5 6 6 27 7 9 27</td><td>21 20 0.6 15 34 14 31 0.6 13 33 14 30 0.6 13 14 0.6 17 17 0.6 21 19</td><td>16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 15 14</td><td>11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 8 8 8 0.8 10 9</td><td>6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6 5</td></td<>	40 68 39 66 0.4 36 64 36 62 226 315 126 0.4 76 134 85 126 0.4 76 121 15 76 115	28 51 26 48 24 48 24 46 0.5 165 238 0.5 165 238 0.5 57 70 81 0.5 50 81 0.5 61 93 354 86	20 39 18 36 0.6 18 37 16 34 0.6 151 209 123 183 0.6 52 80 44 72 0.6 61 0.6 61 0.6 47 39 55 55 55 55 55 55 55 55 55 5	13 30 11 27 0.7 12 29 6 25 0.7 117 165 91 140 0.7 39 6 31 31 54 46 0.7 35 57 78 49	8 23 7 9 0.8 6 21 18 0.8 88 127 66 0.8 23 40 0.8 23 41 18 34 0.8 24 10 34 0.8 24 34 19 36	12 0.9 14 11 0.9 60 90 44 71 0.9 18 34 13 27 0.9 14 29 10 23 0.9 14 29 10 23 10 23 10 23	Wisconsin 7863 DO 43°N Lander, Wyoming 7870 DO 43°N Laramie, Wyoming 7381 DO 41°N Edmonton, Alberta 10268 DO 54°N Ottawa, Ontario 8735 DO 45°N Toronto, Ontorio 6827 DO 44°N Winnipeg,	WW WWNI TWWI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI SHF WWWNI TWNI	108 206 119 204 0.1 163 267 168 264 259 0.1 157 263 164 259 0.1 93 184 0.1 91 185 103 184 0.1 103 184 0.1	44 92 53 92 0.2 76 129 81 126 72 124 79 122 0.2 34 42 83 42 83 0.2 35 81 45 82 0.2 42 89 951 89	24 56 29 56 0.3 47 82 49 80 0.3 44 79 47 77 77 70.3 48 20 48 0.3 17 49 90.3 23 49 90.3 23 55 55	14 38 17 38 0.4 32 58 32 56 0.4 31 55 0.4 31 31 0.4 7 33 33 0.4 14 38 16 37	7 28 10 0.5 22 44 21 41 0.5 22 43 21 41 0.5 20 20 0.5 20 20 0.5 24 24 24 0.5 5 6 6 27 7 9 27	21 20 0.6 15 34 14 31 0.6 13 33 14 30 0.6 13 14 0.6 17 17 0.6 21 19	16 14 0.7 9 26 9 23 0.7 10 26 9 23 0.7 8 9 0.7 12 12 0.7 15 14	11 10 0.8 19 4 16 0.8 19 4 16 0.8 4 5 0.8 8 8 8 0.8 10 9	6 6 0.9 12 10 0.9 13 10 0.9 0.9 4 4 0.9 6 5

Source: "A Simple Empirical Method for Estimating the Performance of a Passive Solar Heated Building of the Thermal Storage Wall Type"

GLOSSARY

Absorber. The blackened surface in a collector that absorbs the solar radiation and converts it to heat energy.

Absorptivity. The ratio of solar energy absorbed by a surface to the solar energy striking it.

Active System. A solar heating or cooling system that requires external mechanical power to move the collected heat.

Adobe. A sun-dried, unburned brick of clay (earth) and straw used in construction.

Air type collector. A collector which uses air as the heat transfer fluid.

Ambient temperature. The prevailing temperature outside a building.

Angle of incidence. The angle that the sun's rays make with a line perpendicular to a surface. **Azimuth**. The angular distance between true south and the point on the horizon directly below the sun. **Btu** (British Thermal Unit). The quantity of heat needed to raise the temperature of one pound of water 1^{0} F.

Calorie. The quantity of heat needed to raise the temperature of one gram of water 1[°] C. One calorie is approximately equal to 4 Btu's.

Concentrating Collector. A device which focuses sunlight onto a small area for collection.

Conductance (C). The quantity of heat (Btu's) which will flow through one square foot of material in one hour, when there is a 1[°] F temperature difference between both surfaces. Conductance values are given for a specific thickness of materials, not per inch of thickness.

Conduction. The transfer of heat through materials by molecular excitation of adjacent molecules. **Conductivity (k)**. The quantity of heat (Btu's) that wi II flow through one square foot of material, one

inch thick, in one hour, when there is a temperature difference of 1^0 F between its surfaces.

Convection. Heat transfer through a fluid by currents resulting from the natural fall of heavier, cool fluid and the rise of lighter, warm fluid.

Dead air space. A confined space of air tending to reduce both conduction and convection of heat. **Degree Day**. Unit representing 1[°] F deviation of one day's mean outside temperature from a fixed standard (650 F); used in estimating a house's heating or cooling requirements.

Delta T. A difference in temperature.

Design temperature. A designated temperature close to the most severe winter or summer temperature extremes of an area, used in estimating a house's heating and/or cooling needs.

Diffuse radiation. Sunlight that is scattered by air molecules, dust and water vapor.

Direct gain. Technique of solar heating in which sunlight enters a structure through windows and is absorbed inside as heat.

Direct radiation. Solar radiation that comes straight from the sun, casting a shadow on a clear day. **Efficiency**. In solar applications, the amount of useful solar energy collected divided by the amount of solar energy available to the collector. Not to be confused with solar heating fraction.

Eutectic Salts. A group of salts that melt at low temperatures (80 - 120° F). absorbing large quantities of heat.

Equinox. Either of two times during the year when the sun crosses the celestial equator and when the length of day and night are approximately equal. The autumnal equinox is on September 22 and the vernal equinox is on March 22.

Flat-Plate Collector. A solar collection device in which sunlight is converted to heat on a plane surface. Glazing. A covering of transparent or translucent material (glass, fiberglass, or plastic) used for admitting light.

Greenhouse Effect. Ability of glass or clear plastic to transmit short wave solar radiation Into a room or collector but to trap long-wave heat emitted by the room or collector interior.

Heat Capacity. A property of a material defined as the quantity of heat needed to raise one cubic foot of the material 1^o F. Numerically, the mass multiplied by the specific heat.

Heat Gain. An increase in the amount of heat contained in a space, resulting from direct solar radiation and the heat given off by people, lights, equipment. and other sources.

Heat Loss. A decrease in the amount of heat contained in a space, resulting from heat flow through walls, windows, roof and other building components.

Hybrid System. Solar heating system that combines active and passive techniques. **Incident solar radiation**. The amount of solar radiation available at a surface. Infiltration. Air flowing inward through cracks, leaks, etc.

Insolation, The incident solar radiation received per unit area of surface.

Insulation. Materials or systems used to prevent loss or gain of heat. usually employing very small dead air spaces to limit conduction and convection.

Liquid-Type Collector. A collector with a liquid as the heat transfer fluid.

Magnetic south. "South" as indicated by a compass; changes markedly with latitude.

Microclimate. Climate of a very small area such as a house site; formed by topography exposure, soil. vegetation, etc.

Passive System. A solar heating or cooling system that uses no external mechanical powerto move the collected solar heat.

Pyranometer. A solar radiometer which measures total insolation, including both direct and diffuse radiation.

Orientation. Alignment of a building to face a certain direction.

Radiation. One of three ways in which heat is transferred (the others being conduction and convection). Radiation is the direct transfer of energy through space, needing no air or other medium for its transmission.

Reflectance. The ratio of the amount of light reflected by a surface to the amount incident. Good light reflectors are not necessarily good heat reflectors.

Resistance (R). The tendency of a material to retard the flow of heat.

Retrofitting. Installing solar heating or cooling systems in buildings not originally designed for them. **R-factor**. A unit of thermal resistance used for comparing insulating values of different materials; the reciprocal of conductivity; the higher the R-factor of a material the greater its insulating properties. **Selective Surface**. Specially adapted coating with high solar radiation absorbance and low thermal emittance, used on surface of an absorber plate to increase collector efficiency.

Solar altitude. The angle of the sun above the horizon measured in a vertical plane.

Solar constant. The amount of solar radiation that reaches the outside of the earth's atmosphere.

Solar heating fraction. That portion of a building's heating needs which is provided by a solar system.

Specific Heat. The number of Btu's required to raise the temperature of one pound of a substance 1[°] F. **Thermal Conductance**. (See conductivity.)

Thermal Mass. The amount of potential heat storage capacity available in a given assembly or system. **Thermosyphon**. The convective circulation of fluid which occurs in a closed system when warm fluid rises. displaced by denser, cooler fluid in the same system.

Translucent. The quality of transmitting light but causing sufficient diffusion to eliminate perception of distinct images.

Transmissivity. The ability of a material to transmit light.

Transmittance. The ratio of radiant energy transmitted through a substance to the total radiant energy incident on its surface.

Trombe Wall. A south-facing wall of massive construction (typically masonry) that is of a dark color and is exteriorally glazed. The glazing acts to trap heat resulting from the sun's rays striking the wall. The heat can be vented to the interior by convection or conducted through the wall itself.

True South. South with reference to the stars, not to the compass; opposite to the Pole Star.

U-factor. A coefficient which indicates the energy (Btu's) conducted through a substance for every degree F of temperature difference from one side to another under steady state conditions. The reciprocal of the R-factor.

Vapor Barrier. A component of construction, usually a membrane, which is impervious to the flow of moisture or air.

Waterwall. An interior wall of water-filled containers constituting a one-step heating system which combines collection and storage.

BIBLIOGRAPHY

Anderson, Bruce. The Solar Home Book. Harrisville, New Hampshire: Cheshire Books, 1976

Anderson, Bruce. "Designing and Building a Trombe Wall." Solar Age. August 1977 pp. 25-28

ASHRAE. Low Temperature Engineering Application of Solar Energy. New York, 1967 pp. 1-18

ASHRAE. Handbook of Fundamentals. New York, 1977

Balcomb, J. D. and J. C. Hedstrom. "A Simplified Method for Calculating Required Solar Collector Array Size for Space Heating." Volume IV, **Proceedings of the Sharing the Sun Conference.** Winnipeg. August 1976 p. 280

Balcomb, J. D., J. C. Hedstrom, and R. D. McFarland. 'Thermal Storage Walls for Passive Solar Heating Evaluation." **Solar Age,** August. 1977 pp. 20-23

Balcomb. J. D. and J. C. Hedstrom. "Simulation Analysis of Passive Solar Heated BuildingsThe Influence of Climate and Geometry in Performance." Los Alamos Scientific Laboratory (LASL) report LA-UR-77-938

Balcomb, J. D .. J. C. Hedstrom, and R. D. McFarland. "Passive Solar Heating of Buildings." LASL R e port LA - U R - 7 7 - 1 1 6 2

Balcomb, J. D .. R. D. McFarland, and S. W. Moore. "Passive Testing at Los Alamos." LASL R e port LA - U R - 7 8 - 1 1 58

Balcomb, J. D. and R. D. McFarland. "A Simple Empirical Method for Estimating the Performance of a Passive Solar Heated Building of the Thermal Storage Wall Type." LASL Report LA-UR-78-11 59

Balcomb, J. D. "Designing Passive Solar Buildings to Reduce Temperature Swings." LASL Report LA-U R- 7 8-1316

Balcomb, J. D. and R. D. McFarland. "A Simple Technique of Estimating the Performance of Passive Solar Heating Systems." LASL Report LA-UR-78-1571

Balcomb, J. D. and W. O. Wray. "Trombe Wall vs. Direct Gain: A Comparative Analysis of Passive Solar Heating Systems." **Proceedings of the 3rd National Passive Solar Conference.** San Jose. J an u a ry 1979 p. 41 - 47

Balcomb, J. D. "Performance Simulation and Prediction." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 254-259

Behrman, Daniel. Solar Energy, The Awakening Science. Boston: Little, Brown & Co. 1976

Bennett. R. Sun Angles for Design. 6 Snowden Lane, Bala Cynwyd. PA 1978

Boes, E. C. "Estimating the Direct Component of Solar Radiation." **ISES Convention Proceedings.** UCLA July 1975

Bergland. L. G. and A. P. Gagge. "Thermal Comfort and Radiant Heat." **Proceedings** of the **3rd National Passive Solar Conference.** San Jose, January 1979 pp. 260-265

Clegg, P. and D. Watkins. **The Complete Greenhouse Book.** Charlotte, VT.: Garden Way Publishing, 1978

Collier. R.K. and D.P. Grimmer. "The Experimental Evaluation of Phase Change Material Building Walls Using Passive Test Boxes." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 547-552

Dietz, A. H. and E. L. Czapak. "Solar Heating of Houses by Vertical South Wall Storage Panels." **Heating, Piping and Air Conditioning.** March 1950 pp. 118-125

Fisher, R. and W. Yanda. **The Food and Heat Producing Solar Greenhouse.** Santa Fe: John Muir Publications, 1976

Hill, J. "Construction of a 16" Poured Concrete Trombe Wall." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 895-899

Hoffman, T. "Passive Combinations for a Native Sun Dwelling." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 767-770

Hunn, B. "Hunn House Uses Trombe Wall." NMSEA BULLETIN, June, 1978 p. 18

Kelbaugh, D. and J. Tichy."A Proposed Simplified Thermal Load Analysis Technique for Trombe Wall Passive Solar Heating Systems." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, Jan. 1979 pp. 403-409

Knudtsen, P. K. "Glazing Materials: Some Alternatives." NMSEA BULLETIN February 1978

Leckie, J., G. Masters, H. Whitehouse, and L. Young. **Other Homes and Garbage.** San Francisco: Sierra Club Books 1975

Mazria, E., M. S. Baker, and F. C. Wessling. "Predicting the Performance of Passive Soiar Heated Buildings." Center for Environmental Research, School of Architecture and Allied Arts, University of Oregon at Eugene

Mazria, E. The Passive Solar Energy Book. Emmaus, PA: Rodale Press, 1978

Mazria, E. "A Design and Sizing Procedure for Passive Solar Heated Buildings." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 249-253

McCullagh, J. C. The Solar Greenhouse Book. Emmaus PA: Rodale Press, 1978

McGrew, J. L. "Heat Loss and Found." Applied Science and Engineering. Denver 1978

Munday, D. "An Inclined Mass Trombe Wall." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 762-766

New Mexico Energy Conservation Code. Albuquerque: New Mexico Energy Institute Report 76152A1978

Noll. S. and M. Thayer. "Trombe Wall vs. Direct Gain: A Microeconomic Analysis for Albuquerque and Madison." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 192-198

Noll, S., J. F. Roach, and S. Ben-David. "Trombe Walls andDirect Gain: Patterns of Nationwide Applicability." **Proceedings of the 3rd National Passive Solar Conference.** San Jose, January 1979 pp. 199-206

Perry, J. "Mathematical Modelling of the Performance of Passive Solar Heating Systems." LASL Report LA-UR-7 7 -2345

Rogers, B. T. "Effect of Moisture Content on the Thermal Properties of Sun-Dried Adobe."NMSEA **BULLETIN** September 1978

Stickney, B. "A Low-Cost Method of Evaluation and Performance Standards in Passive Solar Buildings." **Proceedings of the 2nd National Passive Solar Conference.** Philadelphia, 1978 VOL III pp. 440-444

Stromberg, R. D. and S. O. Wodall. **Passive Solar Buildings: A Compilation of Data and Results.** Sandia Laboratories Report SAND 77-1204 (Revised) June 1978

Shurcliff, W. A. **New Inventions in Low-Cost Solar Heating.** Harrisville, New Hampshire: Brick House Publishing, 1979

Telkes, M. "Thermal Storage for Solar Heating and Cooling." **Proceedings of the Workshop on Solar Energy Storage for Heating and Cooling of Buildings.** Charlottesville, VA: NSF-RA-N-75041 April 1975

Telkes, M. 'Trombe Wall with Phase Change Storage Material." **Proceedings of National Passive Solar Conference.** Philadelphia, 1978 VOL II p. 271

Trombe, F., J. F. Robert M. Cabanat and B. Sesolis. "Concrete Walls to Collect and Hold Heat." **Solar Age** August 1977 pp. 13-19

Trombe. F., J. F. Robert M. Cabanat and B. Sesolis. "Some Performance Characteristics of the CNRS Solar House Collectors." LASL Report

Tyrell. R. "Ralph and Holly Tyrell's House." Solar Age August 1977 pp. 24-27

Walton, J. D. Jr. "Space Heating with Solar Energy at the CNRS Laboratory, Odelllo, France." *Proceedings of the Conference on Solar Heating and Cooling of Buildings.* N S F 1 973

Wessling, F. C. "Solar Retrofit Test Module." **Proceedings of the 2nd National Passive Solar Conference.** Philadelphia, 1978 VOL II pp. 445-451

Wessling, F. C. "Thermal Energy Storage in Adobe and in Stone Structures." ASME Winter Annual Meeting New York 1974 paper 74 WA/HT-15

Wessling. F. C. and H. G. Barkman. "Use of BUilding Structural Components for Thermal Storage." **Proceedings of Workshop on Solar Energy Systems for Heating and Cooling.** NSF Report NSF-RA-N-75-041 1975

©1979 NEW MEXICO SOLAR ENERGY ASSOCIATION 1009 Bradbury SE, #35 Albuquerque, NM 87106 Phone: 505-246-0400 www.nmsea.org