
 

 

LBNL 51550 
 
 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

 
 
 
 
 
 
 
 

Evaluation of Flow Capture Techniques 
for Measuring HVAC Grille Airflows 
 
 
 

 
 I.S. Walker and C.P. Wray 

 
 

Environmental Energy  
Technologies Division 
  
 
 
 
August 2003 
 
 
 
 
 
 
 
 
This work was supported by the Assistant Secretary for Energy Efficiency and 
Renewable Energy, Building Technologies, of the U.S. Department of Energy 
under contract No. DE-AC03-76SF00098. The research reported here was also 
funded by the California Institute for Energy Efficiency (CIEE), a research unit 
of the University of California, under Contract No. S9902A. Publication of 
research results does not imply CIEE endorsement of or agreement with these 
findings, nor that of any CIEE sponsor. 

1



 

 2



 

Disclaimer 
 

This document was prepared as an account of work sponsored by the United 
States Government. While this document is believed to contain correct information, 
neither the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 
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ABSTRACT 
This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of 

laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and 
there can be large measurement discrepancies between different flow hoods. The errors are due to poor 
calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow 
resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the 
grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple 
flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners 
as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test 
results also show that current calibration procedures for flow hoods do not account for field application problems. 
As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along 
with a new measurement standard to address field use of flow capture techniques. 

INTRODUCTION 
For many years, the HVAC industry has used flow hoods to measure grille airflows in non-residential buildings, 

usually as part of a testing and balancing procedure; residential HVAC systems very rarely have been tested (usually 
by the research community). Now, utility programs, weatherization programs, and codes and standards such as 
California’s Title 24 are beginning to consider the need to commission residential HVAC systems. Such efforts 
include using flow hoods to determine if individual rooms are getting correct airflow, and to estimate total air-
handler airflow and duct air leakage. 

A few studies have evaluated flow hood measurement uncertainty in commercial applications (Choat 1999); 
they found that flow hoods are poor at measuring commercial grille flows. Previous studies by LBNL (Walker et al. 
2001, Wray et al. 2002) examined the uncertainty associated with using flow hoods to measure residential grille 
airflows. The results showed that some commercially available hoods can be inadequate for measuring flows in 
residential systems, and that active flow hoods equipped with measurement devices that are insensitive to grille 
airflow patterns give reliable and consistent results. This is primarily because of their sensitivity to flow non-
uniformities and the difficulty in accounting for insertion losses on multiple low-pressure branch systems. 

This paper compiles the results of recent studies at LBNL that evaluated additional commercially available flow 
capture devices as well as several non-commercialized techniques. We evaluated the various devices and 
measurement techniques under both laboratory and field conditions, using both single and multiple branch system 
tests. The laboratory tests enabled us to examine detailed performance characteristics and sensitivity to various 
measurement technique issues such as the critical centering of flow capture devices over grilles. In particular, the 
single branch laboratory tests allowed us to compare the flow capture measurements to very precise airflow 
references. These single branch tests are similar to the methods used by manufacturers to calibrate their flow hoods. 
The multi-branch tests in the laboratory and field allowed us to study the insertion loss effects on flow hood 
performance. Insertion losses occur when the flow resistance of a capture device significantly changes the flow 
through an individual grille. Residential systems are particularly sensitive to this issue because grilles are placed at 
the end of short branches (with correspondingly low pressure drops) such that the extra flow resistance of the 
capture device reduces the airflow through the grille being measured and redirects some of the airflow to other 
grilles in the system. Our tests of the multi-branch systems in the laboratory and field used an active flow hood as a 
reference. That hood has been shown to be accurate for a broad range of applications in previous studies (Walker et 
al. 2001, Wray et al. 2002). 

In addition to evaluating the performance of the capture techniques for measuring residential grille airflows, we 
also carried out some field measurements on commercial grilles. We had speculated in our previous studies that 
many of the failings of commercially available devices would be reduced when they are used for commercial 

 4



 

systems because the grilles on those systems are usually larger (they fill the whole cross section of the flow capture 
device) and some have more uniform flow due to the presence of perforated plate diffusers on the grilles. To provide 
some baseline data on the ability of the commercially available flow hoods to measure airflows for commercial 
grilles, we used several of these devices to measure supply airflows at several grilles in a large commercial building, 
using the active flow hood as the reference. 

When evaluating the accuracy of the flow hoods we need to keep in mind that there is a range of potential 
applications for flow hoods requiring different levels of accuracy. Table 1 summarizes typical accuracy 
requirements for different residential diagnostic applications. Walker et al. (2001) describe these accuracy 
requirements in more detail.   

 
Table 1. Summary of Accuracy Requirements for Residential Flow Hood Applications 

Application Required Minimum Accuracy 
Identifying large leaks/disconnected ducts ±50% 
Identifying room to room pressure imbalances ±25% 
Ensuring room load and comfort requirements are met ±20% 
Determining air handler flow for cooling equipment 
performance estimation 

±10% 

Determining overall system flow imbalances ±10% 
Determining duct leakage ±3% 
 

TESTED FLOW CAPTURE TECHNIQUES 

Commercially Available Capture Devices 
A total of eight commercially available flow capture devices for measuring grille airflows were tested in this 

study. Most use some sort of built-in time averaging to reduce the influence of flow and pressure fluctuations. A 
typical averaging period is on the order of five to ten seconds. The devices that we tested can be split into three 
broad classifications. 

Standard flow hoods use a fabric hood that is fixed to a rigid frame that fits over the grille. The fabric hood 
directs the flow over a velocity or pressure-drop sensing element. Most of these devices have built-in electronic 
signal processing and information displays that include the ability to perform time averaging, temperature 
compensation, and variable insertion loss correction. However, some use analog gauges to display the flow, have no 
temperature compensation, and have a fixed insertion loss correction. We evaluated five different flow hoods in 
these studies. 

Active flow hoods use a flow capture device connected to a calibrated fan-flow meter. A length of plastic flex 
duct and a flow straightener placed between the flow capture device and the fan-flow meter make this device 
insensitive to non-uniform flows at the grille. Adjusting the fan of the calibrated fan-flow meter until there is no 
pressure difference between the room and the hood compensates for the flow resistance of the capture hood, flexible 
duct, and flowmeter. This pressure balancing procedure ensures that placing the flow hood over the grille does not 
reduce the flow out of the grille. 

The pressure inside the hood is measured using a soaker hose (normally used to water plants) sewn to the 
perimeter of the flow capture hood about half way along its length. This hose has many small holes that effectively 
average pressures over the whole length of the hose, and therefore over a large fraction of the hood wall. Laboratory 
tests using several hood pressure measurement techniques have shown that the precise method and location of hood 
pressure measurement is not critical; the test results showed a spread of less than 2%. However, all the results 
presented here used the soaker hose for consistency and because it resulted in the least bias on our full-scale duct 
system laboratory. 

The device is not commercially available as a complete package; however, many practitioners have the fan-flow 
meter device used in these tests. Because laboratory results (Walker et al. 2001, Wray et al. 2002) showed this flow 
hood to be very accurate, it was used as the reference flow hood for the multi-branch laboratory and field studies. 

Flow horns use a formed rigid glass fiber housing to capture the flow and direct the airflow over a thermal 
anemometer. The housing cross section varies from rectangular at the entry to round at the exit where the 
anemometer is mounted. These flow horns came with anemometers that are specially calibrated for use with these 
particular flow horns. They were therefore able to provide measurements directly in airflow (rather than just a 
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velocity). There are also flow horns from other manufacturers (that we did not test) that use vane anemometers in 
the throat of similar rigid flow capture devices. 

Alternative Flow Capture Techniques 
Because our previous studies (Walker et al. 2001, Wray et al. 2002, Sherman et al. 2002) found that many 

existing measurement techniques and devices performed poorly when measuring residential grilles, we examined 
two alternative flow capture techniques. Another reason for considering alternative techniques is that the residential 
HVAC industry needs simpler and less expensive measurement methods in order for diagnostics to become more 
widespread. Therefore, the techniques we considered were focused on reducing the cost and complexity of 
diagnostic testing. Furthermore, inspired by the CMHC (2002) approach to having homeowners perform simple self-
evaluations of their houses (particularly of their heating and cooling systems), we selected techniques that could 
easily be performed by a homeowner using rudimentary equipment and skills. We hope that providing homeowners 
with these sorts of tools will enable them to make better-informed choices about their HVAC systems. 

“Basket” Hood: The basket hood uses a calibrated flow resistance to measure the flow through HVAC system 
grilles. Specifically, this hood measures the airflow by a pressure drop through a set of calibrated holes in the sides 
of the basket. There are commercially available flow resistance devices that use the same principle for measuring 
exhaust fan airflows, but we did not test them in this study. 

We found that normal household laundry baskets tend to have uniform holes and are well-suited to this 
application. However, most laundry baskets have too many holes (and therefore too little flow resistance) for a 
pressure difference between the basket and the room to be measured reliably. Therefore, we systematically covered 
the holes in the sides of the basket. We optimized the position of the holes for the type of grilles (supply or return), 
because we found that holes too close to the flow entry have increased sensitivity to flow non-uniformity. The 
number and size of the holes have also been optimized to produce a reasonably accurate pressure signal while 
minimizing the backpressure effects. 

Different sized basket hoods were developed for supplies and returns because return grilles are often bigger than 
supply grilles and because many systems have fewer returns than supplies resulting in bigger airflows for each 
return. Returns are also easier to measure because the flow into the measuring device does not have the flow non-
uniformities common to supply grilles. 

The basket hoods that we developed incorporate two innovations to further reduce flow non-uniformity effects: 
1. A “soaker” hose is fixed on the inside back of the basket and senses the static pressure inside the 

basket. This hose effectively averages pressures over a large fraction of the basket bottom. 
2. A mesh screen is inserted in the entry of the basket and acts as a diffuser screen to reduce flow non-

uniformities. 
Figure 1 is an illustration of one of our prototype basket flow hoods. For use on commercial grilles, we added a 

commercially available flow capture hood to the inlet of the basket.  
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Figure 1. Supply basket hood 
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White basket with two hole configurations. The basket/hole combinations are labeled in increasing number of holes: 
Blue 4, White 8, Blue 16, White 24, Blue 48. 

Bag Filling: If only a rough estimate of grille flows is required, filling a bag to estimate flows is a very 
inexpensive and simple alternative to expensive commercially available flow hoods. For example, CMHC (2002) 
explains how to use an empty garbage bag to measure grille flows, in language suitable for homeowners. The 
measurement principle is very simple. A garbage bag is placed over the grille and the time required to fill the bag is 
measured using a stopwatch. Because the volume of the bag is known, we can determine the flow by dividing the 
volume by the time. This method is particularly applicable to homeowner diagnostics because no expensive 
equipment (like the pressure sensor for the basket hood) is needed. It also has the advantage that it gives a direct 
volumetric flow without relying on flow measurement techniques that only sample part of the flow or assume a 
degree of flow uniformity as with almost all of the other techniques. In addition, as a demonstration of high or low 
flow to homeowners (or builders/HVAC contractors), the bag filling has a direct visual element that is very 
appealing. 

Originally, bags were used as a way of quickly checking for HVAC system problems that did not require a flow 
to be measured to better than about 30% accuracy. One of our aims in this study is to quantify the uncertainties 
associated with this method and to find ways to improve the measurement accuracy through simple techniques. 
After some experimentation, we implemented two improvements to the method to make the measurements more 
accurate and more repeatable. One improvement was adding a wood frame to the bag opening. This wood frame 
ensured that the bag kept its shape and gave a flat surface for easier edge sealing. The other improvement was 
adopting a measurement technique that helped to ensure consistent timing. Specifically, the user empties the bag and 
then places a sheet of cardboard over the bag opening, between the wood frame and the grille (as shown in Figure 
2). This assembly is placed close to the grille without blocking the flow. The cardboard is then rapidly pulled away, 
and the frame of the bag opening is pressed around the grille. The use of the cardboard sheet introduces a rapid bag 
opening, and the sound of the wood frame contacting the surfaces around the grille gives a consistent audible 
stimulus to begin timing. For most airflows, the bag “pops” into its final shape (as illustrated in Figure 2), but for 
lower flows it is less easy to determine when the bag is “full”. We also used a wire frame (made from coat hangers) 
and tested it on a range of entry shapes. The same calibration technique was used for the bags as for the baskets. A 
total of five bags were tested of different sizes and plastic film thickness. 
 

   
Figure 2. A clear bag before a measurement and a blue bag at the end of a measurement 

 

OVERVIEW OF LABORATORY TEST APPARATUSES 

Single-Branch Laboratory Test Apparatus 
Figure 3 shows a schematic of the laboratory test apparatus that represents a “single branch” system in which all 

flow passes through the reference nozzle and the flow hood. The reference nozzle combines a flow straightener, a 
nozzle, and a pitot-averaging-array to form a flow meter that has an accuracy of ±0.5% of the flow reading. We used 
an adjustable fan to produce a range of typical residential grille flows through the apparatus: 25 to 120 L/s (53 to 
250 cfm) for supplies and up to 1,000 L/s (2,000 cfm) for returns. We changed the flow pattern entering the hoods 
by varying hood lateral placement relative to the grille (center, corner, and center edge), and by using different grille 
styles (Figure 4), different grille damper settings, and different boot types. 
 

 7



 

 
Figure 3. Single-branch grille airflow measurement apparatus 

 
 

   
 

   
Figure 4. Examples of grilles used for single-branch calibration test apparatus. 

Clockwise from top left: one-way, two-way, three-way, and four-way throws. 

Multi-Branch Laboratory Test Apparatus 
The multi-branch laboratory tests used a full-scale duct system that is representative of a typical California duct 

system. It has a single return and eleven supply grilles, with a total flow of about 564 L/s (1,200 cfm). The ducts are 
constructed from standard insulated flex duct with duct board splitter boxes at the duct branches. The ducts are 
suspended below a plywood deck (as if in a crawlspace). Abushakra et al. (2002) describe more details about this 
apparatus. All the grilles are the same size (400 mm × 190 mm, 15.5” × 7.5”); an example is shown in Figure 5. 
These grilles have a much more uniform and non-directional flow than those shown in Figure 4 because of the 
design of the grille. This means that the majority of differences between different flow measurement techniques can 
be attributed to poor centering over the grille and to insertion loss issues rather than the highly directional 
inhomogeneous flow from the grilles in Figure 4. The reference flow for each grille was determined using the active 
flow hood. Due to small changes in duct and splitter box location as the various experiments were carried out in the 
facility we found that the flows through a couple of the grilles changed by a few percent. Because the flow hoods 
were tested over a period of a year on this system, we measured the reference flows before each set of flow hood 
measurements to ensure that we accounted for these small changes. In addition, a large flow nozzle was used to 
continuously monitor the total flow for the system in all experiments. This continuous monitoring showed that 
insertion losses had no measurable (within the ±0.5% accuracy of the flow nozzle) effect on the total flow. This 
indicates that flow reduction through the grille being measured appears at other grilles in the system. 
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Figure 5. Example supply grille of multi-branch duct system in LBNL laboratory  

 

LABORATORY TEST RESULTS FOR COMMERCIALLY AVAILABLE DEVICES 

Single-Branch Laboratory Test Results for Commercially Available Devices 
Flow Horn 1: This small flow horn has a rectangular opening (318 mm × 124 mm, 12.5 in × 4.8 in) that fits 

over the grille and directs the flow over an anemometer placed in the center of a 100 mm (4 inch) diameter round 
exit opening. On the single branch system, the flow horn reduced the flow from 52 L/s to 33 L/s (110 cfm to 69 cfm) 
for the open duct without a grille, and from 52 L/s to 38 L/s (111 cfm to 81 cfm) for a system with a grille in place. 
This 30% to 40% reduction in measured flow illustrates the large flow resistance provided by the flow horn. The 
indicated flow horn readings were 49 L/s and 42.5 L/s (103 cfm and 90 cfm) for these two cases. This result 
indicates that the flow horn does not attempt to measure the actual flow through the flow horn, but has been 
calibrated to attempt to estimate the flow without the horn in place (i.e., the calibration attempts to account for 
insertion losses). However, the flow horn still under-estimates the airflow by 7% to 10%, probably because the 
device it was calibrated on had a different pressure-flow relationship than the one we are using and because of the 
flow non-uniformities generated by the boot and grille. 

It should be noted that attempts to account for insertion losses though calibration only work if the flow being 
studied has the same pressure-flow relationship as the calibration facility. In particular, calibrations are typically 
performed on single branch systems in which all the flow is forced to go through every element of the system. In 
multi-branch systems (essentially all heating and cooling systems), the flow resistance added to one branch redirects 
the flow through other branches in the system. This results in much larger flow changes through the grille being 
measured and the calibration would not be able to account for this effect. Flow Horn 1 was used on a couple of 
grilles on the multi-branch system and the under-predictions of flow were so large (on the order of 50%) that no 
further multi-branch tests were performed. We concluded that this device is unsuitable for measuring airflows in 
multi-branch systems. 

Flow Hood 1: This flow hood was tested on the single branch system with no grille, a residential grille (the 
one-way-throw grille in Figure 4), and a commercial 610 mm × 610 mm (2 ft × 2 ft) grille with its own diffuser 
(3/16" holes, 1/4" on center). Three flow hood locations over the grille were examined with the grille: centered, in 
the corner, and in the center of one edge of the flow hood.. In addition, a diffuser screen inserted into the flow 
capture hood was evaluated to examine its ability to reduce sensitivity to placement issues. The diffuser screen is a 
piece of woven material that covers the inlet of the flow hood. Lastly, tests were repeated with the edges of the flow 
hood taped to the surface around the grille to remove leakage/bypass effects. Each case was repeated between two 
and five times to determine repeatability effects represented by a calculation of RMS.  For the commercial system 
grille only individual measurements were made, except for the nominal 150 l/s (320 cfm) flow rate where the test 
was done twice. Note that the reference measurements were made with the flow hood in place so the single branch 
results do not include flow reduction due to the insertion losses.   

The results in Table 2 show that the flow hood over-predicted the flow for the residential grilles and 
underpredicted for the commercial grille. In particular, with corner placement for the no-grille case, the standard 
operating method over-predicted by almost 50%; this error was reduced to less than 10% when the diffuser screen 
was used. Although it is not normal practice to have no grille, the no-grille tests are an indictor of sensitivity to non-
uniform flows entering the flow hood. The small difference between the mean difference and RMS difference in 
each case indicates that these results are biases rather than repeatability errors. 
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Table 2. Flow Hood 1, Single Branch Results 

Grille 
Flow Hood 
Location 

Reference Flow 
L/s (cfm) 

Mean Difference 
L/s (cfm) 

RMS Difference 
L/s (cfm) 

Centered 52 (110) 5 (11) 7 (15) 
Corner 53 (112) 23 (49) 23 (49) No grille 

Centered Edge 53 (113) 8 (18) 9 (19) 
Centered, with 
diffuser screen 51 (108) 4 (8) 4 (8) 

Corner, with 
diffuser screen 52 (111) 3 (7) 3 (7) No grille 
Centered Edge, 

with diffuser 
screen 

53 (112) 4 (8) 4 (8) 

Centered 50 (107) 1 (1) 1 (1) 
Corner 49 (104) 2 (4) 2 (5) 

Residential grille 
(damper fully open), 

edges sealed Centered Edge 50 (106) 1 (2) 1 (3) 
Centered 52 (110) -1 (-2) - 
Centered 150 (320) -8 (-17) - 
Centered 149 (318) -11 (-24) - 
Centered, 

edges sealed 148 (315) -2 (-5) - 
Commercial grille, 

2 ft×2 ft 

Centered, 
edges sealed 75 (159) -1 (-1) - 

 
Flow Hood 2: This flow meter has two different hood sizes: small 410 mm × 410 mm (16”×16”) and large 610 

mm × 610 mm (24”×24”). The manufacturer recommends using the hood that most closely matches the grille size. 
This device also has a set of vents that are intended to be opened to extend the measurement range to higher flows. 
The grille used for these tests has vanes to direct the air. Therefore, we first tested the flow hood with it placed so 
that the air was directed toward the side of the flow hood nearest the grille, and then we tested the hood with it 
placed so that the air was directed toward the side of the flow hood farthest from the grille. The one-way-throw 
grille in Figure 4 was used with its damper vanes in the fully open position. As with Flow Hood 1, the tests were 
repeated several times to examine repeatability issues, and this flow hood was tested in some cases with a diffuser 
screen. Note that the reference measurements were made with the flow hood in place so the single branch results do 
not include flow reduction due to the insertion losses. 

The results summarized in Table 3 show that the mean and RMS differences are within 0.5 L/s (1 cfm) of each 
other. This is because the experimental results gave consistent biases with little sample-to-sample variation, 
indicating good repeatability. The remaining single branch tests with the vents open had unstable readings, so in 
Table 4 an approximate range of readings is given rather than an RMS value. With the vents closed, the diffuser 
screen approximately halved the measurement errors from about 7% to 3.5%. Including the results in Table 4, with 
the vents open and a higher flow rate, the diffuser screen improved the measurements, with the exception of the 
centered edge case, where the diffuser screen equipped flow hood significantly under-predicted the airflow. In this 
case, there was visible fluttering of the flow hood material indicating significantly non-uniform flow inside the flow 
hood. Repeating the tests with the smaller hood gave similar results, with the diffuser screen giving reduced biases 
and variability: with the air directed to the near panel, the errors were reduced from 22% to 3%, and from 14% to 
2.5% with the air directed to the far panel. 
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Table 3. Flow Hood 2, Single Branch Results 

Flow Hood 
Location Direction 

Hood 
Size Vents 

Reference 
Flow 

L/s (cfm) 

Mean 
Difference 
L/s (cfm) 

RMS 
Difference 
L/s (cfm) 

Centered 51 (109) -2 (-5) 2 (5) 
Corner 51 (109) -4 (-10) 4 (10) 

Centered Edge 

Directed to 
near panel large closed 

51 (109) -3 (-7) 3 (7) 
Centered, 

with screen 51 (109) -1 (-2) 1 (2) 

Corner, 
with screen 51 (109) -3 (-6) 3 (6) 

Centered Edge, 
with screen 

Directed to 
near panel large closed 

51 (109) -2 (-3) -1 

Centered, 
with screen 123 (262) -4 (-9) 4 (9) 

Corner, 
with screen 118 (250) 1 (2) 1 (2) 

Centered Edge, 
with screen 

Directed to 
near panel large open 

118 (251) -12 (-25)2 12 (25) 

 
1- No RMS – single reading 
2- Edge placement had visible fluttering of the flow capture hood fabric 

 
Table 4. Flow Hood 2, Single Branch Results (cases with unstable readings) 

Flow Hood 
Location Direction 

Hood
Size Vents 

Reference Flow 
L/s (cfm) 

Mean 
Difference 
L/s (cfm) 

Variability 
L/s (cfm) 

Center 119 (253) 5 (10) 9 (20) 
Corner 117 (248) 9 (20) 7 (14) 

Centered Edge 

Directed to 
near panel large open 

116 (249) 3 (6) 10 (20) 
Center 122 (259) 21 (45) 9 (20) 
Corner 118 (250) 31 (65) 10 (20) 

Centered Edge 

Directed to 
near panel small open 

118 (250) 21 (45) 9 (20) 
Center, 

with screen 119 (252) -2 (-3) 2 (6) 

Corner, 
with screen 111 (237) 8 (17) 3 (6) 

Centered Edge, 
with screen 

Directed to 
near panel small open 

113 (240) 6 (12) 4 (8) 

Center 118 (251) 23 (49) 11 (24) 
Corner 119 (253) -2 (-3) 5 (10) 

Centered Edge 

Directed to 
far panel small open 

119 (253) -5 (-11) 4 (8) 
Center, 

with screen 117 (249) -4 (-8) 3 (6) 

Corner, 
with screen 115 (244) -4 (-8) 4 (8) 

Centered Edge, 
with screen 

Directed to 
far panel small open 

115 (245) -2 (-3) 3 (6) 

 

Multi-Branch Laboratory Test Results for Commercially Available Devices 
The multi-branch laboratory system was used on two separate occasions. In the first round of testing, three flow 

capture devices were evaluated and, in some cases, not all grilles were tested due to time limitations. In the second 
round of testing, five flow hoods were evaluated, including Flow Hoods 1 and 2 from the first round. These two 
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retested hoods were the same model and manufacturer as in the first round, but had different production numbers. In 
the following test results, the mean difference is an indicator of the bias of the flow hood for the combination of 
tested registers; the RMS difference indicates how well an individual grille is measured. In general, the bias errors 
are of most interest in this study.  The fractions (%) are the average of the individual fractional errors, not the 
average or RMS divided by the average grille flow. In most cases, these different methods of calculating fractional 
differences are extremely close for these data. 

Flow Horn 2, Round One: This flow horn is considerably larger than Flow Horn 1, with an inlet of 610 mm × 
220 mm (24 in × 8.5 in) and a round exit with a 200 mm (8 in) diameter. Flow Horn 2 was used to measure the 
flows on the multi-branch system only. The air handler flow was continuously monitored during the tests and there 
was no measurable change in total system flow when this flow horn was placed over a grille (<0.5 L/s out of 548 L/s 
, <1 cfm out of 1,160 cfm). Each grille was measured with the flow horn centered over the grille and then with the 
grille at the corner of the flow horn inlet. In each case, the flow measurements were averaged for ten seconds, and 
five separate ten-second averages were recorded. These multiple measurements showed that the repeatability for this 
instrument was good, with standard deviations of about 1 to 2% of flow (0.5 L/s to 1 L/s, 1 to 2 cfm) for the five 
readings at each register. Compared to the reference active flow hood, this flow hood showed a bias of –3 L/s (-6 
cfm) and an RMS difference of 5 L/s (10 cfm). Expressed as fractions of individual grille flow, these correspond to 
about -6% and 10% of grille flow. 

The comparison of the flows measured with the flow hood centered over the grille and with the grille in the 
corner of the inlet showed a mean difference of 0.7 L/s (2 cfm), with the corner placement giving higher readings. 
The RMS difference between the two placements was 4 L/s (8 cfm), or about 8% of measured flow. These results 
show that although placement of the flow horn is not critical for total flows, its placement for determining individual 
grille flows has a significant effect. 

Flow Hood 1, Round One: The tests on the multi-branch system were performed with the diffuser screen in 
place and with the flow hood located in three different positions: carefully centered over each grille, with the grille 
in one corner and with the grille in the center of one edge of the flow hood. For the 11 grilles of the multi-branch 
system, the mean error was 0.5 L/s (1 cfm, 1%) and the RMS error was 2.5 L/s (5 cfm, 5%). These results show how 
the use of a diffuser screen combined with careful placement can give good results for this flow hood. Further tests 
were performed on four grilles of the multi-branch system with and without the diffuser screen in place. The mean 
error with the screen was -0.5 L/s (-1 cfm, -1%); without the screen, the mean error was 7 L/s (14 cfm, 14%). 
Similarly, the RMS errors increased from 2 L/s (4 cfm, 4%) to 8 L/s (17 cfm, 17 %) when the diffuser screen was 
removed. These results that show that the diffuser screen makes the flow hood less sensitive to placement over the 
grille and improves accuracy. 

Flow Hood 2, Round One: Flow hood 2 has two capture hoods of different sizes that are selected based on the 
size of the register being measured.  The larger hood is sized to fit over commercial registers while the smaller hood 
is recommended for use on residential registers.  In this round of testing, Flow Hood 2 was used on only four grilles. 
Using the smaller hood, the flows were under-predicted by 1.5 L/s (4 cfm, 4%), with an RMS error of 4 L/s (9 cfm, 
9%). These tests were repeated using a diffuser screen and the under-predictions were significantly increased to 6 
L/s (13 cfm, 13%), with an RMS error increased to 7 L/s (15 cfm, 15%). In the future, it may be possible to reduce 
the diffuser screen induced biases through recalibration (note that Flow Hood 1 used a different calibration when the 
diffuser screen was in place).  With the large hood it over-predicted the flows for the four grilles tested by 0.5 L/s (1 
cfm, 1%), with an RMS error of 2 L/s (5 cfm, 5%). 

Flow Hoods 1 through 5, Round Two: The test results for this second round of testing are summarized in 
Table 5. The biases range from 1% to 9%, and the RMS errors from 3% to 11%.  Note that the RMS errors are the 
average of individual fractions and no the total RMS error divided by the total flow.  The diffuser screen used with 
Flow Hood 1 is again shown to have significant benefits, particularly for individual grille measurements. In all 
cases, these flow hoods have lower biases than RMS errors indicating that they sometimes over-predict and other 
times under-predict for an individual grille. 

The effect of flow hood position was evaluated by measuring the flows with the grilles centered and then 
located in one corner of the flow hood. Although the grilles in this system provide a fairly uniform exit flow, this 
test should still give an indication of flow hood positioning sensitivity. This is a critical issue in residential testing 
because the furniture and other house fittings (including intersections of walls, floors, and ceilings) often prevent 
proper centering of a flow hood. The results showed that the difference between a properly centered flow hood and a 
non-centered one are about 2% to 5%. Although these are not particularly large errors, in several cases, the majority 
of the difference was due to significant variations for just a few of the eleven grilles. This indicates that it is more 
critical to have good centering if one is interested in individual grille flow measurements.   
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Table 5. Multi-branch Test Results for Commercial Flow Hoods 

 Hood 1 
L/s (cfm) 

Hood 1 + diffuser 
screen 

L/s (cfm) 

Hood 2 (small 
hood) 

L/s (cfm) 

Hood 3 
L/s (cfm) 

Hood 4 
L/s (cfm) 

Hood 5 
L/s (cfm) 

Mean 
Difference 

3 (7) 
[6 %] 

-1.5 (-3) 
[-3%] 

-5 (-10) 
[-9%] 

1 (2) 
[2%] 

-0.5 (-1) 
[-1%] 

-3 (-6) 
[-6%] 

RMS 
Difference 

4 (8) 
[11%] 

3 (6) 
[5%] 

6 (12) 
[9%] 

1.5 (3) 
 [3%] 

5 (11) 
[9%] 

 3 (7) 
[8%] 

Corner to center differences 
Mean 

Difference 
2 (4) 
[3%] 

-0.5 (-1) 
[1%] 

1 (2) 
[2%] 

1.5 (3) 
[(2%] 

-0.5 (-1) 
[1%] 

0 (0) 
[0%] 

RMS 
Difference 

3 (7) 
[5%] 

1.5 (3) 
[2%] 

1 (2) 
[2%] 

3 (6) 
[4%] 

4 (9) 
[5%] 

1 (2) 
[2%] 

 

FIELD EVALUATION OF COMMERCIALLY AVAILABLE FLOW HOODS ON COMMERCIAL GRILLES 
In previous LBNL studies (Walker et al. 2001 and Wray et al. 2002), commercially available flow hoods were 

field tested on a residential system. The results of those tests showed considerable differences between different 
flow hoods. In the current study, we wanted to see if the same differences are also present when testing commercial 
grilles. We carried out field tests on four different multi-branch subsections of a large VAV system, using one 
supply grille on each section (there were two to five grilles for any one subsection). We selected four grilles to cover 
a range of nominal grille airflows from 50 to 200 L/s (100 to 400 cfm). The grilles were all 2 ft square, 4-way throw, 
with a perforated face (3/16" holes, 1/4" on center). The VAV system was set to provide constant flow during the 
test period (supply air handler at full flow, all VAV box primary air dampers wide open, system set to full 
recirculation). On each grille, all five hoods were used in sequence with 2' x 2' capture hoods to measure the flows. 
The reference flow for each grille was measured using the active hood. Manufacturer's instructions for hood 
operation were followed in each case (e.g., the use of relief vents or low-flow plates). We found that it was essential 
to follow instructions properly because it was easy to use the wrong operating mode and get large errors (e.g., we 
found an error of 38% by using incorrect vent modes for one of the flow hoods). 

The results of these field tests are summarized in Table 6. Overall Flow Hood 1 had the best performance with 
bias and RMS errors less than 2%. This RMS difference is close to the accuracy of the active flow hood itself, which 
shows that for this grille type, Flow Hood 1 can give the same results as our reference device within the uncertainty 
specification of the reference. Flow Hoods 3 and 5 were a little worse, with RMS errors approaching 5%. Flow 
Hoods 2 and 4 exhibited significant biases and under-predicted flows by more than 10%. 
 

Table 6. Summary of field test results for commercially available flow hoods on 
commercial grilles 

Flow Hood Bias Error, L/s (cfm) Bias Error, % RMS Error, L/s (cfm) RMS Error, % 
1 1 (3) 1 2 (4) 2 
2 -14 (-29) -11 17 (36) 11 
3 6 (12) 4 7 (15) 5 
4 -9 (-20) -11 10 (21) 14 
5 -3 (-7) -2 6 (12) 4 
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LABORATORY TEST RESULTS FOR NEW TECHNIQUES 

Single-Branch Laboratory Test Results for New Techniques 
Basket Hood: For the basket hoods, the grille type (including a no-grille configuration) only changes the results 

by about 1% for the three baskets with the smallest open areas. For the other two more open baskets, one had an 
accuracy of ±3% for one-, two-, and three-way grilles and under-predicted the flow by about 5% for the 4-way grille 
that introduces swirl into the flow. These errors were reduced to less than 1% if a honeycomb flow straightener was 
added to the entry of the basket. The other more open basket had similar results for 1 and 2-way grilles (<3% error), 
but gave errors of about 10% for three- and four-way grilles. 

Because these basket hoods are essentially a set of sharp edged holes in parallel, we investigated the possibility 
of using the open hole area in a standard orifice equation. In practice, many potential users will not have access to 
calibration facilities, but will be able to measure the area of the holes. In that case, if we can provide a recommended 
value of orifice coefficient, then a basket with any size hole can be used without needing individual basket 
calibrations. We measured the open hole area for all the basket hoods. Then, a normalized calibration coefficient 
was calculated by dividing the calibration results by the open area. We found that using a single value of orifice 
coefficient of 0.7 gave only a 2% bias averaged over all five baskets. However, for individual baskets the errors are 
larger, with an RMS error due to using a fixed value of orifice coefficient of 10%. This result indicates that using a 
fixed orifice coefficient of 0.7 will produce acceptable results for most potential applications. 

The return basket hood was tested on the single return of the multi-branch system, essentially making it a single 
return branch test. The test results showed that the insertion losses were about 0.5% (about the same as the accuracy 
of the reference measurements) and the errors due to non-centering of the flow hood were about 1%.  Typical return 
basket hood pressure drops are about 5 Pa, and additional testing needs to be performed on systems with multiple 
large returns to see if these insertion losses produce significant errors. 

Bag Filling: We calibrated the bags that we tested using the single branch system without a grille to determine 
the effective volume and the time exponent. As with the basket hoods, the single branch tests of the bags were also 
used to assess the sensitivity of the bags to different grilles. We tested five different sized bags using this procedure. 
The first two bags were commercially available garbage bags that we had in our laboratory. The other three bags 
were purchased from a hardware store. Because we have the original packaging for these latter three bags, we know 
the nominal volume claimed by the manufacturer. If bags are to be used by a wide range of people who do not have 
access to calibration facilities, then we need to know the accuracy of measured airflows if the user relies upon 
information they are likely to have: i.e., the nominal volume (V) based on package labeling.  Assuming a time (t) 
exponent of –1 allows us to use Equation 1 to determine the air flow (Q). 

1Q Vt−=        (1) 
We found that the calibrated bag volume for Bag 3 seemed to be significantly larger than the nominal volume. 

However, it was difficult to determine how much larger the effective volume was with this bag, because the material 
of the bag was too lightweight to obtain uniform bag filling. This led to the bag folding over onto itself and the bag 
would only partially fill resulting in additional uncertainty about its calibration. Bags 4 and 5 were constructed from 
a heavier gauge of plastic film and did not have this problem. For Bag 5, the calibrated volume was very close to the 
nominal value (within 2.5%); for Bag 4, the difference was 12.5%.  At a typical register flow of about 50 L/s (100 
cfm) using the nominal volume and fixed time exponent of –1 led to overpredictions of 5% and 10% respectively for 
bags 4 and 5.  

We also tested all five bags with the various grilles shown in Figure 4. For the one-way-throw grille, the results 
were within 5% of the calibration. However, for the three-way-throw grille at higher flows (>50 L/s, 100 cfm), the 
errors increase to about 10% for Bags 1 and 2. The problem is that the bags inflate only on one side so that they 
never fully fill up, and it is difficult to visually determine when the bags are full with this highly direction grille 
flow. We performed additional tests with the grille dampers inclined at large angle, and found the same problem. 

Because the wooden frame for the bag entry is unlikely to be used by homeowners, we also tested Bag 1 with a 
wire frame made from a coat hanger (as recommended in the CMHC literature referenced earlier). We experimented 
by bending the coat hanger into different opening shapes to see if the results were affected by opening shape. This is 
important for a couple of reasons: first, users may not be able to create a uniform opening and we need to know how 
much uncertainty this creates, and second, some grilles in houses are odd shapes and the flexibility of the frame is 
then useful because it allows the user to completely cover each grille. We tested eight opening shapes, using three 
different grilles: the two-, three-, and four-way-throw grilles shown in Figure 4. We found that for the two-way 
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grille, the results are not very sensitive to the shape of the bag opening. However, for the three-way grille, there are 
significant differences (>5%), probably due to the more non-uniform flow directions exiting this grille. 

 

Multi-Branch Laboratory Test Results for New Techniques 
Supply Basket Hoods: We found that the basket hoods significantly under-predicted the multi-branch system 

flows due to insertion losses: typically by about 20% for a 5 Pa basket pressure difference to 60% at higher 
pressures. We examined two potential correction methods for accounting for these insertion losses: single point and 
two-point. The single point correction is empirical and is based on measurements on the multi-branch laboratory 
system, as well as on tests in three houses from a previous study (Sherman and Walker 2002). The two-point 
correction uses two baskets of different flow resistances combined with analytical and empirical correction terms. A 
total of 88 grille flows from eight houses and the multi-branch laboratory apparatus were used to determine the 
correction factors. Not all grilles were tested with all the baskets; therefore, different subsets of these 88 
measurements were used for each correction evaluation. 

The single point correction uses Equation 1, with the value of k determined from the field and laboratory 
measurements. 
 ( )1correct calibrationQ Q k P= + ∆  (2) 
where 

Qcorrect is the true flow measured using the reference flow meter and 
Qcalibration is the flow rate calculated using the hood calibration. 
 
The value of k ranged from 0.03 to 0.09 depending on which of the five tested baskets was being evaluated, and 

whether the honeycomb flow straightener had been used. Using a single value of k=0.055 results in bias errors less 
than 3% and RMS errors of about a 10%. These results indicate that using a single value for k gives reasonable 
results for most flow hood applications. The results also showed that this single point correction works most reliably 
for flow hoods that have low flow resistance. For example, restricting the application of Equation 2 to a single low 
flow resistance flow meter resulted in a value of k=0.045, with a bias less than 1%. 

Sherman and Walker (2002) gave the details of how to develop the functional form required for multi-point 
extrapolation. This relationship was developed for a two-branch system and analysis for more branches tends to add 
complexity without improving flow estimates because of the additional unknowns that each branch brings to the 
analysis. The two point testing was only investigated in detail for a subset of 34 of the grilles. Equation 3 includes 
empirical velocity pressure corrections and is used to calculate the corrected flow based on the two flowmeter flows 
and pressures: the subscript “lo” refers to low flow resistance (so high flow and low pressure difference) and “hi” is 
for high flow resistances. 

 
( )( )

( ) ( )

0.5
2

0.5 0.5
2 2

lo hi lo lo
corrected lo

hi lo lo lo

Q Q P k P
Q Q

P k P P k P
− ∆ − ∆

= +
∆ − ∆ − ∆ − ∆

 (3) 

Using Equation 3 with the two-point correction factor, k2, equal to 0.67 (determined by trial and error to minimize 
biases) reduced biases to -0.1% and the RMS errors to 7% (i.e., about the same improvement as the simple linear 
empirical relationship). The reason for this is a combination of random uncertainty in the measurements, and the 
variation in individual branch flow resistance for each grille that cannot be easily taken into account. 

Bag Filling: Bags 1 and 2 were tested on each of the 11 multi-branch laboratory system grilles three times in 
order to study both the accuracy compared to the reference flow hood and the repeatability of the results. The bias is 
less than 1% for Bag 2 and only 4% for Bag 1. This indicates that these bags have sufficient accuracy for all 
applications using the sum of grille flows (total fan flow and duct leakage). The RMS errors are a little larger at 5% 
to 7%, but are still accurate enough for any diagnostic requiring individual grille measurements to be known. The 
repeatability uncertainties averaged about 3% for these two bags on this system. These good results (compared to 
the errors found earlier looking at highly directed flows out of individual grilles) are partly due to the relatively 
uniform flow out of the grilles used for the multi-branch testing. 

FIELD EVALUATION OF NEW TECHNIQUES 
Commercial Supply Basket Hood: We field-tested the commercial supply basket hood on 11 grilles in three 

small commercial building systems. The reference flow hood for the grille flows was the same active flow hood 
used for the residential field tests. Our test results showed that basket hood errors were mostly biases: they tend to 
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under-predict the flows, with a mean difference of –12% (31 L/s (66 cfm) and an RMS difference of 15% (40 L/s 
(85 cfm). In addition, the under-prediction is greater (up to 25% (78 L/s (167 cfm))) at higher flow rates, when the 
backpressure of the flow hood is highest (almost 30 Pa for the biggest underprediction). This indicates that the 
under-prediction is due to the extrapolation of the measured flows to the flow without the flowmeter in place. The 
same two-point velocity pressure correction technique used for residential grilles (Equation 3) was applied to the 
commercial measurements. Using a two-point correction factor, k2, equal to 0.1, reduced the bias error to –0.5 L/s (–
1 cfm (2%) ) and the RMS uncertainty to 23 L/s (49 cfm (11%)). 

Return Basket Hood: The return basket hood was calibrated on the multi-branch laboratory system using that 
system’s high accuracy flow nozzle. It was then field tested on five residential and three small commercial 
buildings. An active flow hood was used as the reference for these tests. The average difference over all these 
systems was only –0.2% and the RMS difference was 2%. This RMS difference is close to the accuracy of the active 
flow hood itself, which shows that the return basket hood gives the same results as our reference device within the 
uncertainty specification of the reference. 

Bag Filling: Bag 1 was used on thirty grilles in three houses. Compared to the reference flow hood, the bias was 
–5% and the RMS uncertainty was 11%. These results indicate that although the bag filling method appears crude, 
the results of bag testing can be used for almost all grille airflow diagnostics, with the exception of the requirement 
for duct leakage estimates (but even for that test, the 5% bias is very close to being acceptable). We found that the 
largest errors are for grilles whose flows are lower than about 20 L/s (40cfm). At these small flows, the influence of 
leakage around the edge of the bag is increased because it takes a long time to fill the bag, and the small 
backpressure required to fill the bag becomes more significant at the low flow grilles. 

Because the bag filling tests require an individual to interpret when the bag filling starts and stops, we need to 
look at variability from user to user. Five people (including researchers, a homeowner, and their son – none of 
whom had any previous experience with this measurement technique) measured the same grille in a house three 
times. Each person was given simple instructions on how to perform the testing and observed an experienced 
researcher perform the test. The results were that the five averaged flows were in a narrow range between 29 and 30 
L/s (61 and 64 cfm). Compared to the reference flow measurement, there was an RMS error of only 1.1 L/s (2.4 
cfm) (4%). 

DISCUSSION 
Based on our test results, flows measured using commercially available flow hoods can vary widely, with some 

devices performing much better than others. Some devices exhibited enough sensitivity to placement over the grilles 
and the extremes of flow non-uniformity that their applications are severely limited. Flow Horn 1 in particular 
produced such large backpressure that it was essentially useless for any branched system. All the tested flow hoods 
had good repeatability (less than 5% variability) if well centered over the grille. In general, the results showed that 
most of the errors are biases rather than random errors. The diffuser screen reduced sensitivity to placement and 
flow direction, but recalibration may be required to account for the extra insertion loss. The diffuser screen is 
particularly useful in removing the extreme (on the order of 50%) errors and reducing them below 10% for some 
individual grille measurements. Finally, testing on a small number of commercial grilles shows less variability than 
for residential applications, mostly because the flow hood size matches the grille size (meaning the hood is well 
centered) and the tested grilles had built-in diffusers. However, there was still a significant range of biases from 1 to 
10% depending on the individual flow hood, with two of the five being significantly worse than the others. These 
results indicate that there is the potential for flow hoods to be accurate enough for a wide range of residential HVAC 
system diagnostic applications, as long as they are well designed to account for the issues of centering and non-
uniform flow, and they do not introduce large backpressures. Combined with the observed range of performance on 
commercial grilles, this implies that standards are needed to ensure consistent and realistic calibration and testing of 
flow hoods. 

The results of the basket hood and bag filling tests are discussed in the context of the lower expectations of 
these devices compared to commercial equipment.  In other words, a 10% error from bag-filling or an adapted 
laundry basket is more acceptable than a 10% error from a much more expensive commercial device because we do 
not expect the simple home-made device to work as well.  The basket hood combines sufficient accuracy for most 
applications while being cheap and easy to use. The development of the basket hoods has shown that it is important 
to balance the need to have hoods that introduce small flow resistances with the precision limits of measuring 
pressures. Extrapolation errors from the intrinsic flow resistance can be effectively reduced by simple empirical 
correction factors that result in biases of about 3% and RMS errors of about 10%. Our experience showed that 
extrapolation should be limited to about a 20% change in flow for best results. There is a small added uncertainty 
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(<5%) if we simply measure the hole size and assume an orifice coefficient of 0.7 and use a standard orifice 
equation rather than specifically calibrating individual devices. 

Bag filling is a good method to measure the flows for situations where the necessary accuracy does not have to 
be better than 10%. The test results showed that the volume indicated by the manufacturer can be used, rather than a 
sophisticated calibration, and only introduces an additional error of about 5 to 10%. 

All these results are based on a limited set of measurements.  Future work needs to expand on these evalautions, 
in particular by performing more field testing of basket hoods and bag filling to confirm their potential as alternative 
measurement  techniques. 
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